Steps in ESR Setup

- 2. measure γ_t with electron cooler (isochronicity curve)
- 3. inject ⁷⁸Kr through target, measure target thickness
- 4. set ESR to Bρ of isochronous ⁷²Ge, optimize injection
- 5. new E_{SIS} for ⁷²Ge at same $B\rho$ after target
- 6. Check resolution with frequency lines of same A/Z = 2.25
- 7 FSR fine tuning cut Bo distribution with scrapers

Setting Details

⁷⁸ Kr

⁷⁷ Br

76 Se

6.23e+1

0.016%

75 As

7.13e+0

74 Ge

⁷³ Ga

72 Zn

71 Cu

77 Se

8.64e+0

0.225%

⁷⁶ As

75 Ge

74 Ga

⁷³ Zn

72 Cu

80 Kr

⁷⁹ Br

8.2e-5 1.5e-4%

78 Se

77 As

76 Ge

75 Ga

74 Zn

73 Cu

 γ_t = 1.41, E/m = 381.9 MeV/u => $B\rho_{ESR}$ (72Ge) = 6.9401 Tm Target 1850 mg/cm² Be => E_{SIS} = 453.9 MeV/u

LISE file of beamline and ESR acceptance

Low transmission (~ 0.2 %) only 380 72Ge / 109 Kr

Expected fragments in order of intensity: ⁷⁴As, ⁷²Ge, ⁶⁹Ga, ⁶⁷Zn, ⁷⁶Se, ⁷⁰Ga, ⁷⁷Br, ⁶⁵Cu, ⁶²Ni, ⁶⁰Co, ..., ⁶⁸Zn, ...

ESR Isochronous Mode

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta (m/q)}{m/q} + \frac{\Delta V}{V} (1 - \frac{\gamma^2}{\gamma_t^2})$$

γ_t is not constant depends on orbit in ESR

"Cooler curve" as test of isochronicity Scan beam Bρ with electron cooler

transform by calculation to other m/q or γ