Steps in ESR Setup - 2. measure γ_t with electron cooler (isochronicity curve) - 3. inject ⁷⁸Kr through target, measure target thickness - 4. set ESR to Bρ of isochronous ⁷²Ge, optimize injection - 5. new E_{SIS} for ⁷²Ge at same $B\rho$ after target - 6. Check resolution with frequency lines of same A/Z = 2.25 - 7 FSR fine tuning cut Bo distribution with scrapers ## **Setting Details** ⁷⁸ Kr ⁷⁷ Br 76 Se 6.23e+1 0.016% 75 As 7.13e+0 74 Ge ⁷³ Ga 72 Zn 71 Cu 77 Se 8.64e+0 0.225% ⁷⁶ As 75 Ge 74 Ga ⁷³ Zn 72 Cu 80 Kr ⁷⁹ Br 8.2e-5 1.5e-4% 78 Se 77 As 76 Ge 75 Ga 74 Zn 73 Cu γ_t = 1.41, E/m = 381.9 MeV/u => $B\rho_{ESR}$ (72Ge) = 6.9401 Tm Target 1850 mg/cm² Be => E_{SIS} = 453.9 MeV/u LISE file of beamline and ESR acceptance Low transmission (~ 0.2 %) only 380 72Ge / 109 Kr Expected fragments in order of intensity: ⁷⁴As, ⁷²Ge, ⁶⁹Ga, ⁶⁷Zn, ⁷⁶Se, ⁷⁰Ga, ⁷⁷Br, ⁶⁵Cu, ⁶²Ni, ⁶⁰Co, ..., ⁶⁸Zn, ... ## **ESR** Isochronous Mode $$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta (m/q)}{m/q} + \frac{\Delta V}{V} (1 - \frac{\gamma^2}{\gamma_t^2})$$ ## γ_t is not constant depends on orbit in ESR "Cooler curve" as test of isochronicity Scan beam Bρ with electron cooler transform by calculation to other m/q or γ