
Distributed Data Analysis under usage

of Grid Resources – Gap Analysis

HEP Community Grid

Stage One Report on
WP 3: Distributed Data Analysis
under usage of Grid Resources –

Gap Analysis

GSI Darmstadt, 02 January 2007
Version: 1.33

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Table of Content

1 ABSTRACT.. 3
2 INTRODUCTION ... 4
3 DISTRIBUTED PARALLEL DATA ANALYSIS.. 5

3.1 THE ALICE MODEL OF DISTRIBUTED AND PARALLEL ANALYSIS... 6
3.1.1 Batch Interactive Data Analysis with AliEn and ROOT.. 7
3.1.2 Interactive Data Analysis with AliEn and PROOF.. 10
3.1.3 ALICE VOBox and gLite ... 11

4 GAP ANALYSIS.. 12
4.1 MODEL DESCRIPTION .. 12

4.1.1 The Model’s “road map” .. 12
4.1.2 The Model’s criteria for success.. 13
4.1.3 Development Environment... 13

4.1.3.1 Grid middleware...13
4.1.3.2 ROOT...15

4.1.4 Design and implementation of the ROOT plug-in for gLite... 15
4.1.4.1 gLite API Wrapper...16

4.1.4.1.1 GAW Core Manager ...20
4.1.4.1.2 GAW Job Manager ...20
4.1.4.1.3 GAW Catalog Manager ..21
4.1.4.1.4 GAW Persistence Manager...21
4.1.4.1.5 GAW Configuration Manager...22
4.1.4.1.6 GAW Log Engine ...23

4.1.4.2 RGLite plug-in ...24
4.1.4.2.1 RGLite Tests & Samples...26

4.2 LOW-LEVEL GAPS ... 30
4.2.1 ROOT Framework ... 30

4.2.1.1 Grid Interface ...30
4.2.1.2 TGridJob::JobID ..30
4.2.1.3 GetJobOutput is missing ..30

4.2.2 Third-party Gaps ... 30
4.2.2.1 gLite middleware general...31

4.2.2.1.1 A gLite test-bed installation and configuration ...31
4.2.2.1.2 gLite and Operating Systems ..31
4.2.2.1.3 gLite internal modules and components..32
4.2.2.1.4 gLite Logs...32
4.2.2.1.5 gLite UI...32
4.2.2.1.6 gLite Documentations and WEB sites ..32

4.2.2.2 gLite API..33
4.2.2.2.1 API Installation ...33
4.2.2.2.2 Library dependences ...33
4.2.2.2.3 API modules dependences ..33
4.2.2.2.4 LCG API modules vs. gLite API modules ..34
4.2.2.2.5 LFC API, LFC server host name...34

5 DESIGN CONCEPT AND DEVELOPMENT PLAN .. 36
5.1 LOCAL PROOF CLUSTER .. 38
5.2 “MARRIAGE” OF THE PROOF AND GLITE ... 39
5.3 COMPLETE GAW AND RGLITE PLUG-IN IMPLEMENTATION .. 40
5.4 DEPLOYMENT.. 41
5.5 IMPLEMENTATION FOR OTHER GRID MW.. 42
5.6 INVESTIGATE OTHER GRID API INTERFACES... 43

5.6.1 GAT ... 43
5.6.2 SAGA ... 44

6 REFERENCES... 45

 2

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

1 Abstract
TODO: Write this part as the last one

At GSI distributed analysis tools under usage of grid resources are being developed within
work package 3 of the HEP community Grid.
A starting point is the analysis framework ROOT. Making use of a set of abstract classes
provided by ROOT (TGrid ...) an interface to gLite is being created to enable Grid access
directly from within ROOT. This includes querying the File Catalogue, job submission,
getting job status and output. By combining several stand-alone PROOF based analysis
facilities using existing Grid Middleware large dynamically generated Grid Analysis Clusters
can be created.

 3

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

2 Introduction
TODO: Write this part as the last one

 4

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

3 Distributed parallel data analysis
The aim of distributed parallel data analysis on the Grid is to enable physics collaborations
and individual physicists to use the power and resources of the Grid.

The four experiments ATLAS, ALICE, CMS, and LHCb, at CERN will collect, in the first
year, an amount of about 20 Petabytes of data. Also in the following years the LHC (Large
Hadron Collider) experiments will produce data in the order of Petabytes, so it requires a lot
of storage space as well as CPU power in order to perform simulations and to do the analysis
of these data (see Figure 1).

Figure 1: Summary of computing capacity of LHC experiments [1]

Conventional Mass Storage Systems and Batch Systems of individual computing centers can
handle very well subsets of this dataset. When scaling up to the total amount of data one
requires an equivalent scale change from single computing centers to a complete Grid of
computing centers.
Each LHC experiment will involve an average of 1000 physicists. This is an important
parameter since all collaborators must have access to the data. In this case Grid can be the
only solution for coordinated efficient production, data distribution, and data analysis.
In this paper we will discuss not only advantages, which a production Grid would bring to the
HEP (High Energy Physics) community, but mostly possible ways to improve the speed of
data analysis, to make it more convenient for users. The main idea is how to define a general
way of distributed data analysis on the Grid for all experiments in the HEP community.
Today, the Grid gives us the possibility to access resources of different sites and to use it as if
it would be one local batch farm with one single storage system. The linking of
geographically dispersed computer systems can lead to staggering gains in computing power,
speed, and productivity. The Grid can solve larger, more complex problems in a shorter time,
makes better use of modern hardware, and eases collaborations among distributed
organizations.
But so far there is no general standard defined which can help physicists to make their job
more efficient by using the Grid. Each of the LHC collaborations is forced to use its own
home-made schema or framework to put the Grid on their needs.

 5

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

One can summarize and list the following problems:

• There is no general and Grid enabled data analysis schema.
• There is no standardized and generally accepted API of the Grid; we are talking

here about a high level API, which could be generally used by an end-user to
satisfy his/her needs in parallel data processing on the Grid in the simplest possible
way.

Our task is to generalize the capabilities and to investigate the current Grid market as well as
the possibility for creating a model, based on which the HEP community could get one
generic way for an efficient and user-friendly Grid use. We would like to find the model,
which could be most easily adapted, which would be flexible, and would not require a special
knowledge from the user. Our work must define this model and also it should define criteria
of success for this model. We have to create an operational solution, which is a very important
part of the model’s implementation.

3.1 The ALICE model of distributed and parallel analysis
After a short pre-stage strategy investigation, we decided to use in the role of a starting point
for our project one existing and operational distributed analysis model, which has been
implemented by the ALICE collaboration and is so-far working only for the ALICE
experiment, because of its restrictions. But we think that this model has a lot of potential and
could be populated and spread to a wider range of experiments and Grids.

The ALICE model involves AliROOT (the ALICE analysis and simulation framework, which
is completely based on ROOT [4]), AliEn (Grid middleware developed by the ALICE
collaboration) [5] and PROOF (The Parallel ROOT Facility) [6].

ROOT is obviously becoming one of the most popular physics analysis toolkits. It is a de
facto standard framework in the HEP community as well.
Shortly saying it provides three key points:

• the possibility to do interactive analysis work in familiar C++ style syntax;
• data visualization,
• an object-oriented I/O system.

It is successfully used within frameworks of different experiments as an “all in one” solution.

PROOF extends a workstation based concept of ROOT to a parallel processing on a cluster
(see Figure 2), where:

• user procedures are kept identical during an analysis session,
• tasks are distributed automatically in the background.

The motto of PROOF is: “Bring the KB to the PB, not the PB to the KB!”

AliEn (ALICE production distributed Environment) as a Grid platform for distributed
production and analysis provides two key elements:

• a global file system -- files are indexed and tagged in a virtual file catalogue and
are globally accessible from everywhere;

 6

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

• a global queue system, and global job scheduling according to resource

requirements.

Figure 2: Local PROOF cluster

3.1.1 Batch Interactive Data Analysis with AliEn and ROOT

Normally in order to process an analysis using AliEn and ROOT one should use a ROOT
AliEn plug-in, which is currently provided by the standard ROOT installation package and
AliEn developers. The plug-in is an implementation of a ROOT Grid Interface. The ROOT
Grid Interface is a subset of abstract C++ classes, which are defining Grid interface operations
for ROOT users. In Figure 3 we present an UML class diagram of the ROOT Grid Interface is
shown.
The interface consists of the following classes:

• TGrid (TGrid.h(cxx)): A pure abstract base class, which defines the interface to
common GRID services.

• TGridJDL (TGridJDL.h(cxx)): A pure abstract class. It is used to generate JDL
files for job submission to the Grid.

• TGridJob (TGridJob.h(cxx)): A pure abstract class. The class defines an interface
to a GRID job.

• TGridJobStatus (TGridJobStatus.h(cxx)): A pure abstract class. The class contains
the status of a Grid job.

• TGridResult (TGridResult.h(cxx)): A pure abstract base class, which defines an
interface to a GRID result. Objects of this class are created by TGrid methods.

 7

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

• TGridCollection (TGridCollection.h): a class which manages files collections on

the Grid.

Figure 3: UML class diagram of the ROOT Grid Interface

In Figure 4 an UML class diagram of the ROOT plug-in for the AliEn middleware is shown.
This plug-in is the first concrete implementation of a ROOT Grid interface, which is already
operational for AliEn users.

 8

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 4: UML class diagram of the ROOT plug-in for the AliEn middleware

The analysis process, which based on the AliEn plug-in, consists of the following steps, which
could be processed in the ROOT C++ interpreter console (manual enter mode), by a ROOT
macro or by using a C++ program with enabled ROOT support:

• Query for input data in the AliEn File Catalogue;
• registration of the input data in ROOT;
• creation of the corresponding JDL file;
• submission of a single job request, which is spawned afterwards by the AliEn

engine;

 9

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

• status Check;
• merging of interactive result files;
• merging of batch result files.

3.1.2 Interactive Data Analysis with AliEn and PROOF

The next step is to marry PROOF, which has been basically designed for doing data analysis
on local batch farms in parallel, and AliEn.
There are several basic requirements for Interactive Data Analysis made with the help of
AliEn and PROOF:

1. The data to be analyzed have to be stored in ROOT files (TTrees or TKeys).
2. PROOF servers have to load shared libraries for user and experiment code.
3. Analysis code has to be inserted into the automatically generated selector macro

for the objects to be analyzed: obj->MakeSelector();

A schema of a PROOF based interactive analysis using AliEn Grid, is shown in Figure 5.

Figure 5: AliEn and PROOF

As a short description for the picture we should mention that every site provides at least one
PROOF Master, each Worker Node of a site provides a PROOF Slave, one of the powerful
Grid’s site (probably a Tier 1 site) should provide access to the SUPER PROOF Master,
which will manage and distribute jobs to the client sites. The actual retrieving of data files,
submission of jobs, as well as security authentications are managed by the AliEn Grid and are

 10

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

used by the PROOF system and end-users. A connection to the PROOF daemons is provided
with the help of a TCPRouting Service at every site.
Users will just submit a normal job packet to AliEn; then AliEn and PROOF will do all the
necessary work of distributing the job, processing and merging the result, and retrieving it
back to the user or register it in the AliEn File Catalog by request.
Taking into account the advantages of the ALICE distributed data analysis we decided to
accept this model as a strategic one for our gap analysis and development.

3.1.3 ALICE VOBox and gLite

We would like to enable or let’s say spread the ALICE like analysis for a wide range of Grid
middleware, or at least to proof that it works in general and for the most popular middleware
flavors, other than AliEn.
Currently in order to process AliEn jobs and to have an interface between AliEn and the
standard Grid middleware of all 4 LHC experiments, gLite, ALICE is using the so-called
VOBox, as it is provided by the LCG project and EGEE. For example, to process AliEn jobs
on a gLite site, administrators must install and use at least one VOBox node with a Grid to
Grid interface of the AliEn software installed on it.
Unfortunately we found that it is not so far possible to provide ALICE-like distributed
analysis as it is and without an AliEn client present or an ALICE VOBox installed. This is the
one major disadvantage, which prevents distributing the modules and to bring it to the
different experiments.

However, our task is to analyze and to implement a way, which could provide a possibility for
different physics communities and not only physicists from ALICE to use Grid middleware
for all the tasks needed.

 11

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

4 Gap Analysis
4.1 Model description
In order to achieve our aim we need to create and investigate a system, which allows users to
process a parallel and distributed analysis. The final system must be flexible and documented
enough to be ported to different Grid middleware flavors with minimum requirements on
human and time resources. We have to provide an operational test model which would be
based on one of the popular and the most used Grid middleware flavors as well as to provide a
precise documentation with a model description (including source code and its description)
and recommendations for further developments, like investigations for bottlenecks and their
descriptions and hints.

By achieving our goal we are going to implement and test a model, which will give a
possibility of implementing an efficient distributed parallel data analysis based on any Grid
middleware (as an exemplary case we choose the agreed standard Grid middleware of the 4
LHC experiments, gLite) and which could proof the possibility of creating a model for a
generic analysis on the Grid for the HEP community.

4.1.1 The Model’s “road map”

All of the following steps are closely described in the paragraph “§5 Design concept and
development plan”. Here we will just make a short list of required steps of accomplishments
for the model.
The modeling consists of the following steps, which must be accomplished:

1. The following is, so to say, the input data for our model. A proper development
environment must be provided. This environment must include access to the
desired Grid or otherwise a local Grid test-bed must be installed. Also access to the
Grid User Interface must be provided as well as access to the Grid middleware
API. So far our model is based on the C++ language; therefore the Grid
middleware should provide a C/C++ API.

2. An interface to the existing middleware has to be developed and its use in the
experiment frameworks has to be enabled. As it has been already stated, ROOT is
a pretty much standard framework for all of the HEP experiments. To accomplish
the task, in particular, one should design and implement a ROOT plug-in of the
desired Grid middleware. By accomplishing this stage one gets access to all the
required functionality of Grid and ROOT. This is a big and an important step for
the model, since a huge part of the distributed analysis, and analysis at all, is
implemented by ROOT itself and a proper design and implementation of this plug-
in will affect the quality of the whole analysis process and its results.

3. A local PROOF cluster has to be installed and provided.
4. Possibilities for executing PROOF master and PROOF slave processes on the

gLite Grid have to be investigated.
5. A concept of using PROOF master und slave processes on the gLite Grid has to be

implemented.
6. PROOF job submission on the desired Grid middleware (gLite as a test

environment) has to be implemented.

 12

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

7. The whole system has to be tested, i.e. a test analysis code on the desired Grid

middleware using the constructed model in full operational mode has to be created.
8. The system has to be deployed to test users. This also consists of a good

documentation, support of the software and an intensive dialog with users in order
to advance this product.

9. The system has to be deployed for public use. After preproduction – test
deployment, comes a time for public release. At this stage we are going to apply
our model and software to become officially accepted and included in the ROOT
framework.

10. A ROOT plug-in for several different Grids has to be implemented, to proof the
usability of the interface.

4.1.2 The Model’s criteria for success

The model can be considered as a successful one, when the following points are
accomplished:

1. At least the first 6 steps from the model’s “road map” (see §4.1.1) have been
accomplished successfully.

2. The project has a clear and detailed documentation. The documentation must be
divided in two parts, the first for end-users, and the second part for advanced users
– application developers. The source code of the project must be documented as
well.

3. One type of a TGrid like ROOT plug-in next to the AliEn implementation became
part of the standard ROOT installation.

4. On of the major criteria for success is that the concept should be used by several
different physics collaborations. Popularization and simplification of the Grid
enabled Interactive Analysis is a main goal.

4.1.3 Development Environment
4.1.3.1 Grid middleware

We decided to base our project on the gLite Grid Middleware, since it is widely used and one
of the biggest operational Grid middleware flavors today. gLite is a strategic Grid middleware
for HEP.

gLite (pronounced "gee-lite") is the next generation middleware for grid computing. It was
born from the collaborative efforts of more than 80 people in 12 different academic and
industrial research centers as a part of the Enabling Grids for E-sciencE project (EGEE). The
EGEE is Europe’s flagship Research Grid project and the world’s largest Grid infrastructure
of its kind. The Project gLite provides a bleeding-edge, best-of-breed framework for building
grid applications tapping into the power of distributed computing and storage resources across
the Internet [3].
At the time of writing, the EGEE project was involving more than 70 partners from 27
countries, arranged in twelve regional federations, and providing more than 20,000 CPUs,
almost 200 sites and 10 Petabytes of available disk storage, and access to Mass Storage
Systems at a number of sites. This infrastructure supports 7 scientific domains and more than
20 individual applications.
The architecture of gLite is shown in the Figure 6.

 13

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 6: gLite Service Deployment Scenario [3]

The development environment of our gap analysis is based on our experience with gLite R1.4,
R1.5 and R3.0. Those versions of the middleware were at GSI locally installed, configured
and used. We investigated carefully most of the components of the middleware and its
internal structure. This is a basic and an important analysis which should be done before
coming to the development of an application which will use the API of the middleware.
In our development we tried to use the maximum number of application programming
interfaces (API) which are currently provided by the most recent version of gLite in order to
make a comparison of the components in a spectrum of usability, documentation, efficiency
etc.
For example, a current implementation of our project is based on:

• gLite WMSUI – for job submission, status querying and output retrieving;
• LFC (Local LCG File Catalog) API – for file catalog operations;
• GFAL (Grid File Access Library) API – for file operation on the gLite Grid.
But we also used the following components of gLite:
• WMProxy – as an alternative for job submission -;
• FiReMan – for file catalog operations;
• gLite I/O server — for file operations on the gLite Grid.

 14

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 7: gLite Services

4.1.3.2 ROOT

The main part of our project is a ROOT plug-in for gLite. This plug-in must be designed and
developed in terms of our model.
During the development process we used several versions of ROOT ranging from v5.10.00 to
v5.12.00f.

4.1.4 Design and implementation of the ROOT plug-in for gLite

Since we decided to try and implement an ALICE like model we were required to design and
implement a very important part of the model, namely a ROOT plug-in for the chosen Grid
middleware.
At this stage of the project we have designed and developed a ROOT plug-in for the gLite
Grid middleware. This is an essential part of the model!

As a first step we have analyzed and investigated the gLite API. We wrote a lot of small tests
in order to get “a feeling” and to understand restrictions of the API. That was our pre-
development investigation.
Then we had to investigate the Grid Interface provided by ROOT, since our plug-in was
supposed to be an implementation of this interface (see Figure 8).

 15

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 8: ROOT Grid Interface

Our implementation of the plug-in consists of two parts. The first one is the design and
implementation of the so-called gLite API Wrapper (see Figure 9). The second one is the
implementation of the plug-in itself.

4.1.4.1 gLite API Wrapper

A gLite API Wrapper (GAW) is a library, which wraps several gLite API modules,
implements automation, and represents the interface for the user. Through the usage of GAW
the user gets a general interface to the gLite middleware.
Our ROOT plug-in is using the interface of GAW to access the needed functionality of the
gLite middleware (see Figure 9).

 16

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 9: gLite API Wrapper and RGLite plug-in

One of the main reasons why we started to design this library is to keep the modularity of our
system. The gLite API is very complex, and one of the disadvantages of it is that it is very not
consistent and doesn’t have a common “design line”. That means gLite API consists of
several modules (like several WMS APIs, LB API, LFC API, etc.). Interfaces of these API
modules are not standardized and have no general schema, which makes these API modules
difficult to use. Also, the important thing is that the gLite API modules require many
secondary libraries they depend on. And when one wants to accumulate in one application the
functionality of different API modules, a build configuration (a Makefile) becomes very
complex, and the overall structure of the application becomes very difficult to understand.
Dividing our ROOT plug-in into two general parts helps us in the development process, to
easily write tests for both parts (while we have a strong border between the ROOT part and
the gLite API part), and simplifies the deployment and support of the released software.

Thus we have implemented GAW as a library, which is released in a number of managers.
The managers work directly with the gLite API modules and implement some API extensions
(those extensions we can call as utilities or helpers or automations). This is done in order to
extend the API functionality.

 17

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

To simplify the development and the support of the project and to follow Open Source de-
facto standard, we are using GNU auto-configuration tools for building and deploying
GAW.

We consider that project documentation is the most important part of the project, in order to
track code documentation we are using the doxygen engine [8]. Code documentation also
facilitates latter support. The project documentation is kept and maintained in a central GSI
WiKi, where the GSI GridTeam, and particularly the D-Grid project have a site [9].

The source code, tests, configurations, and some of the documents are tracked with the help of
the Central GSI Sub Version System (SVN), where the GridTeam has several repositories.

Most of the GAW managers are Singletons, the implementations of which are releasing
Singleton Design patterns and are done in C++ language.
We chose this schema to keep tracking of the objects and their status, and to avoid memory
and code pollution. A Singleton’s intent is to ensure that a class only has one instance, and it
provides a global point of accessing it.

At the time of writing of this report the GAW library was consisting of the following:

• GAW Core Manager,
• GAW Job Manager,
• GAW Catalog Manager,
• GAW Persistence Manager,
• GAW Configuration Manager,
• GAW Log Engine.

 18

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 10: UML class diagram of the GAW library

 19

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

4.1.4.1.1 GAW Core Manager
The Core Manager is an interface of the GAW library. This manager is responsible for
configuration, the proper initialization of sub-managers (like Job manager, Catalog manager,
etc.), and also partially responsible for a persistence of all “top-level” managers of the library.
Normally The Core Manager is the first which should be initialized by the end-user.

4.1.4.1.2 GAW Job Manager
Using this manager a user is able to process job operations on the gLite Grid such as job
submission, query of job status, and output retrieval.
The manager also keeps track of all processed jobs. All jobs have got at least two types of
IDs, one is a gLite JobID, which comes from the EU DataGrid Project and is of string type,
and the other is a numeric Job ID – job index, which is done for compatibility reason, see
§4.2.1.2.
The Job Manager supports a job persistence mechanism. That means that after the user
processed several jobs and wants to close the GAW session, the GAW Job Manager will store
all required information about the current status in order to be able to restore the session next
time. This feature can be switched on or off by the user with the help of the GAW
configuration.
Currently the Job Manager is implemented as a Singleton object and it uses only the gLite
WMSUI API. In the future we want to make this manager a bit more complex; we want it to
support several different gLite API modules for a job submission. Namely, we want to
implement not only WMSUI API job submission, but also WMProxy API [10], which is more
modern and has many advantages in comparison with WMSUI. The implementation which
uses WMProxy API is in our development plan for the next stage of the project. We found
that the functionality of WMSUI API is enough to prepare and test a prototype of our model.
And taking into account that WMSUI API is so far the most used way of doing job operations
in gLite, we started our Job Manager from this API module. But for more serious work we
would require functions which are available in WMProxy API, only..
The WMProxy client API supplies the client applications with a set of interfaces concerning
the job submission, and control services made available by the gLite WMS through a web
service based interface. The API provides the corresponding method for each operation
published in the WSDL description of the WMProxy service. The request types, supported by
the WMProxy service, are:

• Job: a simple application;
• DAG: a direct acyclic graph of dependent jobs;
• Collection: a set of independent jobs;

Jobs in turn can be batch, interactive, MPI-based, checkpointable, partitionable and
parametric.
By our development plan the Job Manager may be a bit redesigned in order to support modern
C++ technique, for instance template type traits. So it could be instantiated by different types,
which will wrap different gLite Job controlling APIs, so the user gets a possibility to simply
use both WMSUI and WMProxy APIs. Probably most of the GAW managers will be adapted
for this mechanism in order to extend the functionality of the objects and to support and get
the possibility to analyze and test bigger ranges of gLite API modules.
But this way is still under development and must be carefully investigated. We should
compare the advantages and disadvantages based on user and project result requirements. It is

 20

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

not so far obvious that we need for our model to support all of the possible gLite API
modules.

4.1.4.1.3 GAW Catalog Manager
The development of the Catalog Manager appeared to be more complicated and time
consuming than it was expected to be. The story was the following:
we used the “JRA1: Data Management Documentation page” [11] and “JRA1: Data
Management site” – the official gLite Data Management contact, to design and to develop our
Data Management Components. Therefore the development was based on two major
components of the gLite I/O system, namely the gLite I/O Server and the gLite FiReMan File
Catalog. They have been stated as the main gLite Data Management modules by JRA1. But
unfortunately during our close work with the gLite I/O Server and the FiReMan Catalog it
was discovered that those components are going to be excluded from future releases of gLite.
That was definitely the fault of obsolete WEB information on the official gLite Web Site. If
we would not have discovered several bugs in the Data Management modules and would not
have posted them, we wouldn’t have started the discussion with the gLite Deployment
management which revealed that the official Web pages were not properly updated (see
§4.2.2.1.6).
Now our Catalog Manager uses LFC. LFC is an official gLite File Catalog.
The GAW Catalog Manager implements the following operations:

• to set and query the current working catalog directory:
• to list the content of the selected catalog directory (list files, directories and their

status);
• to create a file in a Catalog namespace;
• to add replica(s) to a given file in the Catalog namespace;
• to remove replica(s) from a given file in the Catalog namespace;
• to remove a file or directory from a given file in the Catalog namespace.

Combined with standard File Catalog interface functions the GAW Catalog manager
implements a number of extensions (automation) to the normal catalog operations offered for
a user, which are not present in the original LFC API:

• if a user requests to remove a directory and its content, the GAW Catalog Manager
will remove all files of the directory and corresponding replicas,

• if a user requests to force removing a file, GAW will remove all its replicas
automatically,

• we found the necessity to set LFC Host manually for the LFC API functions
inconvenient (see §4.2.2.2.5). GAW tries a bit to simplify this by defining the key
in its configuration file,

• most of the LFC API functions have a very short connection time out. The GAW
manager implements a workaround (invisible for a user), in order to keep the
connection during long user sessions.

4.1.4.1.4 GAW Persistence Manager
One of the Core GAW engines is the Persistence Manager.
Its main responsibility is to be a provider of persistence for the GAW managers. The GAW
Persistence Manager uses an XML based file for storage. Some of the GAW managers use the

 21

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

provider to store and restore the required information in order to be able to save and recover a
user session’s stat.
For example, the GAW Job Manager with the help of the Persistence Manager keeps track of
a user’s jobs.

4.1.4.1.5 GAW Configuration Manager
Another Core GAW engine is the Configuration Manager. It is not really a manager because
its functionality is distributed between other GAW Managers. The Configuration Manager is
only providing the interface and all of the GAW components which we want to have
configured must implement this manager. The coordination of the configuration of GAW
components is implemented in the GAW Core Manager.
The configuration is tracked in an XML formatted file. The currently supported XML schema
of the configuration file is shown in Table 1. This is a preliminary version of the configuration
file. We are going to extend it and to provide maximum configuration flexibility for the users
with adequate default values in order to let the users configure the software as precisely as
needed. Also we are going to provide a tool, which will automatically scan a gLite User
Interface configuration and prepare a default GAW configuration file. The development of the
tool is scheduled to the next stage of the project (see §5).
Table 1: XML Schema of the GAW configuration file
<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="gaw_config">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="gaw_mng">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="config">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="logfile" type="xs:string" use="required" />
 <xs:attribute name="logfile_overwrite" type="xs:unsignedByte" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="job_mng">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="config">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="ns_host" type="xs:string" use="required" />
 <xs:attribute name="ns_port" type="xs:unsignedShort" use="required" />
 <xs:attribute name="lb_host" type="xs:string" use="required" />
 <xs:attribute name="lb_port" type="xs:unsignedShort" use="required" />
 <xs:attribute name="ce_id" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="jobs">
 <xs:complexType>

 22

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

 <xs:sequence>
 <xs:element name="job">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="glite_jobid" type="xs:string" use="required" />
 <xs:attribute name="numeric_jobid" type="xs:unsignedByte" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="catalog_mng">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="config">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lfc_host" type="xs:string" use="required" />
 <xs:attribute name="lfc_session_comment" type="xs:string" use="required" />
 <xs:attribute name="lfc_wrkdir" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="last_update" type="xs:string" use="required" />
 <xs:attribute name="version" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

4.1.4.1.6 GAW Log Engine
Several years of experience in Grid middleware deployment (installation and configuration)
and the fact, that it is very complicated to trace an error in distrusted applications, make us to
be concerned on the message, that the logging is a very important part of Grid middleware
admin- and user-interface.
Our application provides the Log Engine, which is used by the all of the components of
GAW.
The application provides the following types of log messages:

• LOG_SEVERITY_INFO, which indicates a normal information message;
• LOG_SEVERITY_WARNING, which indicates a warning information message,

probably an erroneous situation but a recoverable and not dangerous one;
• LOG_SEVERITY_FAULT, which shows that GAW detected an error which is

recoverable but could be dangerous, and it is better to fix it before processing
further;

• LOG_SEVERITY_CRITICAL_ERROR, this type of message shows that GAW faced
an unrecoverable stat for the current procedure. Before going further the user may

 23

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

want to fix the situation and the GAW log messages can help him to accomplish
that;

• LOG_SEVERITY_DEBUG, this is only debug information of GAW functions, useful
for the developers and for advanced users.

Currently GAW writes the log to a plain formatted-text file. But an internal architecture of the
log engine allows extending it to other sources, like relational data bases, console or some
other clients of log messages.

4.1.4.2 RGLite plug-in

RGLite – is a ROOT plug-in for gLite Grid middleware.
In the same way as it is done in the AliEn middleware plug-in we have to realize the ROOT
Grid Interface (see Figure 3) but for the gLite middleware. The current implementation of the
ROOT plug-in for gLite is presented in Figure 11, it is an UML class diagram of the plug-in.

Figure 11: UML class diagram of the ROOT plug-in for the gLite middleware

The current status of the plug-in is: the development stage is completely finished; this
includes readiness for the alpha release ROOT plug-in for gLite, ROOT style plug-in

 24

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

documentation and a patch for recent versions of ROOT. The patch makes an installation
process of the plug-in easier for an user. Later we expect our plug-in to be included to the
standard ROOT installation, but so far the patch will help the users.
The following functionality is implemented and available for the end-user by the current
prototype version of the gLite plug-in:

• Workload Management System (WMS) operations:
o Job Submission, (to submit a job)
o Job Status Querying, (to query the status of a job)
o Job Output Retrieving. (the retrieve the output of a job)

• File Catalogue operations:
o to set and query the current working catalog directory,
o to list the content of the selected catalog directory (list files, directories and

their stats),
o to create a file in a Catalog namespace,
o to add replica(s) to a given file in the Catalog namespace,
o to remove replica(s) from a given file in the Catalog namespace,
o to remove a file or directory from a given file in the Catalog namespace.

• An Executive Logging.
• Support of an external configuration.
• File I/O operation could be performed with the help of TGFALFile, a ROOT

class-wrapper of GFAL.

Since the standard file operation mechanism in gLite is GFAL -- and the GFAL class-
wrapper is a part of the standard ROOT installation, we don’t need to implement this in our
plug-in. Users can use the standard ROOT implementation of TGFALFile (see the UML class
diagram in Figure 12).

 25

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 12: UML class diagram of the ROOT implementation of GFAL

4.1.4.2.1 RGLite Tests & Samples
In this paragraph we would like to present several “real-life” examples — test cases, which
will show basic usage and abilities of the RGLite plug-in in very simple manner.
The first example (see Table 2) shows us some of the basic operations provided by the ROOT
Grid Interface and the RGLite plug-in for the gLite middleware. The first example consists of
the following steps:

1. Connection to the Grid MW. In this step the user needs to initialize the Grid plug-
in; one can make so by calling the method “Connect” of the TGrid class with
according parameters. In our case we call connect with the string “glite” as a Grid

 26

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

URL string, which means that we want to access the gLite Grid. According to the
given parameters ROOT will initialize the proper plug-in if available.

2. Submitting a job using the abstract Interface TGridJob and the method Submit.
3. The user can check the status of the jobs by using the abstract Interface class

TGridJobStatus and its method GetStatus.
4. Finally, when the job is finished and has the status “kDONE”, the user can retrieve

the job output back to the User Interface. In order to do so the user should use our
extension to the abstract ROOT Grid Interface, namely, the user should use
TGLiteJob class, which is an implementation of TGridJob with some useful
extensions (it is registered as a low level gap in the ROOT Grid Interface, see
§4.2.1.3).

In Figure 13 you can find the screen shot of a live ROOT session with processed code of the
example from Table 2.

Table 2: RGLite Usage Code example – job submission, status querying, output retrieving

// Initializing RGLite plug-in
TGrid::Connect("glite");
// Submitting a Job to gLite Grid
TGridJob *job = gGrid->Submit("JDLs/proofd.jdl");
// querying a Status of the Job
TGridJobStatus *status = job->GetJobStatus();
status->GetStatus();
// Getting a Job's output back to the user
TGLiteJob* job_glite(job);
job_glite->GetJobOutput("/home/anar/");

It needs to be mentioned that from the end-user’s point of view a usage of RGLite and the
AliEn plug-ins is mostly the same, since most of the time the user will talk in “the language”
of the ROOT Grid Interface classes and in some rare case will use the specific extension of
the plug-ins.

 27

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Figure 13: Live example of using RGLite (executing the code from Table 2)

The examples in Table 3, Table 4, Table 5, and Table 6 show how an end-user can handle File
Catalog operations using the TGrid interface and the RGLite plug-in, such as querying and
changing current catalog directory entries, listing files and their full or partial information,
creating new catalog directories, etc. The examples below are designed for the ROOT C++
interpreter but can be also used in normal C++ applications with enabled ROOT support.

Table 3: RGLite Usage Code example – Changing File Catalog directory, querying lists of files

// Initializing RGLite plug-in
TGrid::Connect("glite");
// Changing current File Catalog directory to "dteam"
gGrid->Cd("dteam");
// Querying a list of files of the current FC directory
TGridResult* result = gGrid->Ls();
// Printing the list out
Int_t i=0;
while (result->GetFileName(i))\
> printf("File %s\n",result->GetFileName(i++));

Table 4: RGLite Usage Code example – Listing full file information of a File Catalog folder

// Initializing RGLite plug-in
TGrid::Connect("glite");
// Changing current File Catalog directory to "dteam"
gGrid->Cd("dteam");
// Querying a list of files of the current FC directory
TGridResult* result = gGrid->Ls();
// Printing the list out, including full file information
result->Print("all");

 28

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Table 5: RGLite Usage Code example – retrieving the name of a current File Catalog folder

// Initializing RGLite plug-in
TGrid::Connect("glite");
// Changing current File Catalog directory to "dteam"
gGrid->Cd("dteam");
// Printing a current working directory
std::cout << "Working Directory is" << gGrid->Pwd() << std::endl;

Table 6: RGLite Usage Code example – creating a new File Catalog Folder

 // Initializing RGLite plug-in
TGrid::Connect("glite");
// Changing current File Catalog directory to "/grid/dech"
gGrid->Cd("/grid/dech");
// Creating a new File Catalog Folder
Bool_t b = gGrid->Mkdir("root_test2");

 29

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

4.2 Low-level Gaps
We have investigated gaps in all components; those were used in the design of the Model. The
gaps which are listed below are low-level gaps and divided on several parts.

4.2.1 ROOT Framework
4.2.1.1 Grid Interface

ROOT provides an Interface for the Grid. This is a kind of a gap due to the fact that the design
of the interface is mainly based on knowledge of the AliEn Grid middleware. One of our
goals is to improve this interface, thus to make it suitable for a wider range of Grid
middlewares.
All the following gaps are going to be discussed with the ROOT and AliEn developers.

4.2.1.2 TGridJob::JobID

The Class member TGridJob::JobID, which has a numeric data type, needs to be revised.
This class was designed based on the AliEn example, where JobID is numeric. But while
developing the gLite plug-in for ROOT we found, that this is very inconvenient having JobID
predefined in the parent class and as numeric. For example the gLite middleware uses the
DataGrid Job ID, which is a unique string ID. So, either TGridJob should be a template class
interface, which leads to a slight redesign of the whole TGridXXXX interface or the type of
TGridJob::JobID should be changed.

4.2.1.3 GetJobOutput is missing

There is a missing functionality in the TGridXXXX interface.
We didn't find a way (method) via which the job output could be retrieved directly to the UI
(or the machine, where the ROOT instance is running, a local folder, for instance). There are
only possibilities to register the job output in a File Catalog and get it there (AliEn way).

4.2.2 Third-party Gaps

As third-party gaps we would like to call the ones that were discovered and analyzed during
our effort, but unfortunately can’t be fixed or redesigned by ourselves. Mostly it is a problem,
a bug, or a possible improvement which we traced and discovered and which is related to the
gLite middleware itself or to one of its components. We always tried to be in contact with the
gLite development and deployment team since we chose this middleware for our project.
In this terms “contact”, means, that as soon as we discovered, traced a bug, we posted it in
issues tracker or requested an improvement of a component of the middleware etc. We were
very intensively working with the middleware.
For the period of the first stage of the project we have found and reported to the CERN
Savannah issue tracker [7] more than 15 confirmed bugs in the released (production)
software, and some of the bugs were blockers in general or specific cases. We did not only
post the bugs, but also for all of the bug tickets we tried to provide sufficient information,
based on our investigation, including workarounds and possible fixes.

 30

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Our site is actively participating in testing of the middleware. We also helped several different
sites to install and use middleware and helped to resolve some issues, since, for example, GSI
was one of the first sites which installed the R1.5 release, which was having several bugs
(blockers).
We are part of the Grid community, and it is our role to help to populate the Grid technology
and make it user-friendly, and open it for an end-user.
In spite of the fact that the following gaps can’t be really fixed by us and only can be reported
to the gLite development and deployment teams, we would like to list them here in this paper,
because a huge amount of work has been done on middleware and on API investigations and
analysis.

4.2.2.1 gLite middleware in general

4.2.2.1.1 gLite test-bed installation and configuration
In order to prepare an environment for our project gLite R1.4 (preproduction release), gLite
R1.5, and then gLite R3.0 were installed and configured, what gave us a test and development
environment. Unfortunately it must be mentioned that approximately 60% of our project time
were spent on the middleware. For the first releases R1.4 and R1.5 we had almost no support,
because most of the power of the gLite deployment and development team has been spend on
future integration releases (LCG MW + gLite = gLite R3.0). The other thing is that the
middleware was containing bugs, which were blockers and until we resolved those bugs and
found workarounds or fixes we couldn’t continue our project. There was and still is a lack of
low-level architecture documentation of middleware. There is some lack of documentation
which describes extended installation and configuration of the middleware – a different way
than the default one. Plus some more problems described below.
It is also worth once more to mention that GSI was one of the few sites (and the first site in
the EGEE DECH Region), which managed to install R1.5, while providing fixes for the bugs
and helped other sites, and GSI's gLite R1.5 test-bed was the first D-Grid development
environment. The R1.5 release had several problems which were revealing themselves in
some cases during configuration and operation procedures.
Probably we can conclude that installation and configuration of the middleware is not so far
as easy as one would expect it to be. Grid is a very new technology and a role of everyone in
this business is to develop it further and bring it to standardization.

While installing and configuring the middleware we accumulated valuable experience about
the internal architecture of the gLite middleware, which is very helpful in our development
and analysis of the API, while there is still a lack of low-level architecture documentation.

4.2.2.1.2 gLite and Operating Systems
Currently it is very difficult and officially unsupported to use gLite under different operating
systems, but SLC3. Taking into account that gLite is a build of components, which are
portable, like CONDOR and GLOBUS, one can conclude that gLite must not be strictly
dependent on SLC3 (SLC3 was the only supported platform at the time of writing of this
paper). One should consider this is a priority issue, in order to populate Grid.

As far as we’re concerned, the gLite community is working on middleware porting issues…

 31

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

For example, GSI actively participates in porting gLite to other Linux flavors, e.g. we have
ported the UI (User Interface) and the WN (Worker Node) software to Debian (“Woody” and
“Sarge”), Fedora Core 5, and the SE (Storage Element) has been ported to MacOS X 10.

4.2.2.1.3 gLite internal modules and components
There is an obvious lack of documentation on the internal gLite architecture. We consider that
it is very important to know for developers or administrator the internal architecture, the
components on which gLite is based (like Condor, Globus, VOMS, etc.) and how they depend
on each other. Without this knowledge it became a difficult task to trace possible or real
problems on the site or develop software for this specific Grid.

4.2.2.1.4 gLite Logs
It is very important to have general information, which describes log books of gLite
components. This must be documented which is an extension of information for "gLite
internal modules and components". Currently there are only some of gLite components' log
books, which are documented.
Missing information about location and processes of logging and of defining log levels must
be considered as an important issue!

4.2.2.1.5 gLite UI
The gLite deployment team should consider providing a relocatable middleware UI
distributive on primary bases. Currently it seems to be that the gLite UI relocatable tar-ball is
supported on the lowest priority. But it is very important to give users possibilities to install a
Grid UI to any machine or OS, and make this process as easy as it could be possible with
minimum configuration efforts required from the user. This relocatable tar-ball distribution
must be an up-to-date middleware package as all other important Grid packages.
Simply to say the user must be able to have a one click UI installation on his laptop which
runs under Operating system XYZ and gets access to the desired Grid.

4.2.2.1.6 gLite Documentations and WEB sites
In such a world-wide distributed project as any Grid project, it is primary to have the WEB
site interfaces of the project updated on regular bases.
There was a very unfortunate incident, which affected our project. At the time when we
started to develop I/O mechanisms of our GAW library and the RGLite plug-in we used the
“JRA1: Data Management Documentation page” [11] and the “JRA1: Data Management site”
official gLite Data Management contact, to design and develop on Data Management
Components. There was time and man power spent on test, design and development of the I/O
part of GAW as well as on installation and configuration of the gLite I/O server and FiReMan
file catalog and the configuration against our dCache based storage. There were also several
bugs discovered while working on this issue. Fortunately our tickets, which we opened to
founded bugs, initiated a discussion with the gLite developers, and which had revealed the
fact that in the future releases of gLite the components gLite I/O server and FiReMan file
catalog assigned as deprecated and will be soon removed from the standard middleware
installation and support. This “small” inconsistency of the real fact listed on the official WEB
site or documentation could have lead to an expensive problem or mess and disorganization.
The conclusion would be the following:

 32

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

The information WEB sites and documentation in such a distributed project must regularly be
updated, at least when major release of software comes!

4.2.2.2 gLite API

4.2.2.2.1 API Installation
It will be better if the instillation of the gLite API became easier, or let us say more
convenient as it is now.
For example one wants to install the WMProxy C++ API or any other API module. We are
concerned, that the package should provide its dependencies list which isn’t unfortunately
always the case for gLite API modules, and the installation should be a one step installation,
like for instance just executing of "apt-get install WMProxy_cpp_api" and that's all. All the
rest should be done automatically. Again, the API module is better to be concentrated in one
package which makes the API installation packages a set of independent modules and with
clearly defined external dependencies lists.
As an example, we would like to give a list of what generally a user should do in order to get
WMS UI API installed on his machine, now:

• One must be "root"!
• One needs to install more than 15 different gLite API packages!
• One needs to install external dependency packages by oneself.

This looks like a bit too much for just to be able to develop software for the Grid.
Why not just providing only one package or at least 2: “XXXX_api_XXXX_FULL” and
“XXXX_api_XXXX_Compact” or something like that, instead of putting a user in such a
complicated situation, we are talking only about native gLite API modules here.
To compile just a simple job submission, one wouldn’t need the entire API with all its
modules, though, so one could use a “compact” package. On the other hand if one wants to
develop an application using the gLite API one could have it completely installed.
If it is not possible, for some reason, to distribute the API modules this way, then an
installation helper (script or application) should be taking this job. Accessibility and usability
of an API of the Grid is one the way to popularize Grid and make it used by people.

4.2.2.2.2 Library dependencies
We found that API inter-library dependencies are not documented. This documentation will
be very helpful for one who wants to use the API and link against it. Even so, some of the API
libraries are built with unresolved symbols inside, which is not always a good idea, for
example in case of a C/C++ API, which makes them rather difficult to be resolved without a
clear documentation, which is currently missing.
We also found that dependencies of the gLite API on third-party libraries or modules are
badly documented.
Besides taking into account the complex installation of the API modules (see §4.2.2.2.1) it
became difficult to resolve all dependences, sometimes.

4.2.2.2.3 API modules dependencies
There is no clear explanation (documentation) on the API module dependencies. For instance,
it is not clear which library (module) must be added to the project, if one wants to use the
WMSUI API functionality or R-GMA API. There are some examples, which can be found on

 33

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=besides

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

the Web, but they are not up-to date all the time and in addition they are distributed instead of
being accumulated on one site (like gLite home or something equivalent on the gLite
Developer Network) at least as links.

4.2.2.2.4 LCG API modules vs. gLite API modules
The gLite middleware consists of both types of API modules; some comes from LCG (LHC
Computing Grid) and some from gLite. Here we wont go too into much details, like saying
that the former DataGrid project or AliEn had given some significant amount of modules or
code to gLite, but rather we will just point on general and obvious differences between the
LCG API modules and the gLite ones.
So, in the current gLite middleware both types (LCG & gLite) co-exist, some time ago they
were merged.
For example, WMProxy API is a gLite API module which provides an interface to the job
operations (this module was developed by the gLite EGEE project), but the LFC API is a
gLite API, which provides an interface to the File Catalog operations and which was inherited
by gLite from LCG.
While working with both types of API modules, it was noticed that there are a lot of
differences.
Most of the gLite API modules normally are documented including doxygen style code
documentation and have tests (small programs which could be used to test the API) located in
the gLite CVS repository and which could be freely accessible by users. The documentation
and code have coding and documenting style and standards, as developed by the EGEE
project. It definitely gives an impression of industrial software development.
On the other hand some of the LCG API modules, like LFC API and GFAL, are not so good
documented and it is pretty hard to find required information, sometimes information are so
few, that it takes a lot of time to put the API module on the needs – to use it. There is an
obvious lack of examples and tests for LCG API modules. As an example we can give the
LFC API or the GFAL API modules – two modules of high importance which belong to the
LCG part. From the headers and some source code which we fortunately found, it looks like
they have been “partially” inherited from the CERN CASTOR project, but lack of own
documentation and tests (or examples) and description of specific aspects of usage doesn’t
give room for making them popular.

It must be clearly stated, that API modules are going to be used by not only internal
developers, but rather by end-users and/or by Grid application developers. The key points
here are good documentation and availability of the source code or at least availability of
examples.

Since most of the gLite API modules are new ones, we can see the good attitude here. But
still, old inherited API modules must be brought into a proper shape and documentation for a
new one needs to be updated on regular bases.

4.2.2.2.5 LFC API, LFC server host name
Different functions of the LFC API which are requiring an LFC Host, take the LFC Host
name in two major ways: some functions take the LFC Host name as a parameter to them, and
some functions require that an environment variable “LFC_HOST” should be defined. For
example, to create an LFC session one should call “lfc_startsess” function, which is defined
in the “lfc_api.h” as follows:“int lfc_startsess (char *server, char *comment);”, where Name

 34

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

Server (LFC server name) should be given as the first parameter and in the same time some
functions like “struct lfc_filereplica *lfc_listreplica (const char *path, const char *guid, int
flags, lfc_list *listp)” require the server name as an environment variable.
It is not proper to have it in that way, especially if users are forced to define any environment
variable.
We would like to propose to allow the developer to define the Name Server host name as a
parameter to the all function, which require a server name.

 35

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5 Design concept and development plan
In this paragraph we would like to shortly summarize what was done during the first stage of
the project and mainly describe the design concept of the model, which is the result of the gap
analysis and our research, and will be fulfilled in the next stage of the project. In the following
we describe the model of a possible general Grid enabled distributed parallel data analysis for
the HEP community.

Figure 14: gLite and PROOF

A high level picture of the design concept of a gLite based Grid enabled distributed parallel
data analysis is shown in Figure 14. The schema consists of the following parts:

• The gLite Grid Middleware — as a Grid provider, including gLite compatible I/O
services (dCache, LFC, DPM, etc.). Short status: This task is done and the testbed
is available. Our team is constantly working on this issue. We always have several
gLite clusters: at least one for preproduction tests and one for production. We also
keep contacting our colleagues in the German/Swiss federation in order to
exchange our experience and reuse clusters. We constantly keep an eye on the

 36

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

current development and releases of gLite, since it could affect the plan of our
development.

• Enabling PROOF in gLite environment.
o PROOF services. Each worker node of each site should run a PROOF slave

and there should be at least one PROOF master for the site. Short status: This
is done only partially and most of the work is going to be finished in the next
stage of the project.

o There should be a SUPER PROOF MASTER running somewhere. Short
status: This is not done. The work is scheduled to the next stage of the project.

• ROOT Grid Interface with available gLite plug-in – this is an essential component of
the system, which enables the user to access a desired Grid directly from within
ROOT. Short Status: The task is done. In the next stage of the project this
component is going to get some improvements and “beautifications”, for example,
in order to support several Job Manager types and some changes of the interface
to make it more user friendly(see §5.3).

So far the results look promising. But as it can be seen we are not still completely sure that
there is a possibibilty to create an ALICE-like analysis based on different Grid middleware
(namely gLite), because we have analyzed and implemented only a part of our model. What
has been done up to now:

1. A preliminary recognition, analysis of existing environment and conditions, which
helped us to define the research and development strategy.

2. The definition of the model.
3. The gap analysis of the chosen environment and of the model.
4. The implementation of components of the model (the whole “ROOT” part is

done).

Generally we can say that our plan for the next step of the project is to get the design of the
model and to get its implementation done in all aspects and to bring the system to a
deployment state.
Missing (not investigated or not implemented) parts of the system shortly could be
summarized as the following:

1. Local PROOF cluster.
2. “Marriage” of PROOF and gLite.
3. Complete GAW and RGlite plug-in implementation.
4. Deployment.
5. Implementation for other Grid MW.
6. Further investigations of other Grid API Interfaces.

The following paragraphs contain information about our research and development plans.

 37

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.1 Local PROOF cluster
Before we can seriously look for the solution, which could help us to use PROOF on the Grid,
we need to get experience with PROOF. This is the reason why we need to have a local
PROOF cluster first, based on a most recent ROOT version (we require the most recent
version of PROOF, because it is an actively developed package of ROOT).

The GSI GridTeam had already pretty much worked with PROOF [14], also in this terms the
GSI GridTeam led a course in the GridKa School 2005 “Hands On ROOT / PROOF” [16].
This is a good and valuable experience, but since our team worked the last time on PROOF a
lot of changes have been made by the ROOT team in the PROOF package. We therefore
require a fresh and recent PROOF cluster being installed and investigated in all aspects. We
should find out a suitable solution for using PROOF algorithms in a gLite Grid.

 38

http://gks05.fzk.de/upload/Exercises/exercises.html

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.2 “Marriage” of the PROOF and gLite
The result of the research concerning a local PROOF cluster (see §5.1) is a part of the solution
which could help us to marry PROOF and gLite. We need a solution, which could give us the
same possibilities as in the case of AliEn and PROOF (see §3.1.2).

TODO: Describe Interactive gLite job.
TODO: # Develop a schema, which could help to process PROOF jobs on gLite MW

 39

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.3 Complete GAW and RGlite plug-in implementation
As it was already mentioned the RGlite plug-in has currently all required functionality which
needs to be in a ROOT Grid Interface plug-in for the gLite Grid middleware: it implements all
of the methods of the ROOT Grid Interface. Also it was stated that RGLite is completely
based on GAW (GSI GridTeam gLite API wrapper library).

In spite of the fact that all of the functionality, required by the ROOT Grid Interface, is
already implemented we see some room for improvements and there is at least one
functionality, which we would like to implement.
For the next stage of the project we are planning the following implementation improvements
in RGLite and in GAW:

• The GAW Job Manager is going to be slightly redesigned and will be implemented
as a C++ template class in order to support type traits and several different Job
Managers of gLite (for example WMSUI and WMProxy).

• The interface of the GAW Core Manager is going to be changed accordingly to the
GAW Job Manager.

• The GAW Job Manager will get better support for different job types (such as
interactive jobs).

• BOOST [17] tests will be used instead of “home-made” tests in order to bring
quality assurance of the product to a higher level.

• Several methods of the RGLite plug-in are going to be improved in terms of
usability (internal code improvements, better logging and user interaction).
Especially this will affect the TGLite interface.

• There are currently several test cases (implemented as ROOT macros) for RGLite
and those can be used as examples for end-users. However it requires more
complex use cases and examples. This will help users to faster understand and get
to know this interface.

• Project and code documentation are going to be constantly revised.

TODO: Write something about development of small tools (for example, a tool which will
scan gLite UI and generate GAW config. automatically.)

 40

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.4 Deployment
As soon as we get the first fully operational alpha version of the product (for all of the means
– the whole implementation of the model for the gLite Grid) we will try to find test users.
Also, starting from now, November 2006, there will be a place from where the RGLite plug-
in, and the GAW library could be downloaded so that users who may want to use it could do
so already. RGLite can give some advantages already now, because it allows everyone who
uses ROOT to design and implement Grid enabled applications, but the real power for data
analysis will come as soon as we will implement a complete model and will get all of the
components (RGlite, ROOT, PROOF, gLite) to work together.

The deployment stage of the project will consists of three major parts:

1. Alpha. On this stage we would like to test our schema intensively in a “real life”
analysis including stress tests. We are expecting to get some individual users or a
small group of users to have close contact with while they use our solution. Most
probably here will be some design corrections and major improvements done. This
stage is dealing with user requirements, it is very important to get some test users
and feed back from them in order to improve the solution accordingly. There will
be an Issue tracker installed (like Bugzilla) where users can register an issue or
bug and get feedback from the developers.

2. Beta (or pre production). Here we are going to massively advertise our product and
try to deploy the system to bigger collaborations or groups of users. This is a very
difficult task. Therefore every possibility must be used, like conferences,
workshops or locale presentations. A regularly updated, dedicated product web site
with available downloads and documentation should be launched.

3. Production. This stage is a long term plan and has in mind the usage of the
solution in a production system. The strategy for the production system is going to
be designed on later stages of the project.

To bring our project to the alpha stage is the current plan for the deployment.

 41

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.5 Implementation for other Grid MW
When our system will get alpha release, we will start to develop implementations for other
Grid middleware, for example Globus4. This means that we would need to implement a
ROOT plug-in for Globus4 and implement after some investigation mechanisms to enable
PROOF job submission in a Globus4 environment.
Implementation for different middleware will improve the system, and mostly it will improve
the ROOT Grid Interface. While implementing a plug-in for Globus4 we will see if there is
any inconsistency in the interface, and we could find out about possible improvements
compared to what we did when implementing the plug-in for the gLite middleware.

 42

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

5.6 Investigate other Grid API Interfaces
We realize that it is important to be well informed about modern Grid technologies. Grid is a
very young technology and it grows pretty fast. We therefore should keep up-to date our
knowledge about generic Grid APIs, modern Grid technologies in newly developed or already
existing production Grids.

As a short term plan for the next stage of the project we assigned investigation and tests of the
following generic Grid APIs: Grid (Lab) Grid Application Toolkit [12] and Simple API for
Grid Apps (SAGA) [13].

5.6.1 GAT

“GAT is a set of coordinated, generic and flexible APIs for accessing Grid services from e.g.
generic application codes, portals, data management systems, together with working
implementations provided by the tools developed in the Grid Lab project (See the figure
below). GAT is designed in a modular plug-and-play manner; such that tools developed
anywhere can be plugged into GAT.

As shown in the above figure, GAT and the GAT API sit between Grid applications and
numerous types of grid middleware. GAT lifts the burden of grid application programmers by
providing them with a uniform interface to numerous types of grid middleware. As a result,

 43

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

grid application programmers need only to learn a single API, that of GAT, to obtain access to
the entire grid.” [12]

5.6.2 SAGA

“The SAGA Research Group at GGF (Global Grid Forum) strives to define a high level API
for developers of Grid Applications. Instead of interfacing directly to Grid Services, the
applications can so access basic Grid Capabilities with a simple, consistent and stable API.
For example, to copy a file on a Grid, not much more than

call fileCopy (source, destination);

should be needed. Although this example is simplified, it illustrates the motivation for our
work. The APIs specified by this WG will deliver a similar level of abstraction for several sets
of basic Grid operations. The precise set of operations is yet to be defined, based on use cases
elicited by the group, but our initial focus will be on file transfer and job submission.

The group will lower the barrier for scientific application developers to make use of the
grid by providing a small, consistent API for the operations of interest, the Simple API
for Grid Applications (SAGA).” [18]

 44

Distributed Data Analysis under usage
of Grid Resources – Gap Analysis

Version: 1.33
Date: 02 January 2007

6 References
[1] „Alice Grid Activities“, Dr. Peter Malzacher (GSI), Seminar Datenverarbeitung in der

Hochenergiephysik DESY, 2006-05-27

[2] AliEn Home site, http://alien.cern.ch/twiki/bin/view/AliEn/Home

[3] gLite middleware, http://glite.web.cern.ch/glite/

[4] ROOT, http://root.cern.ch/

[5] AliEn, http://alien.cern.ch/twiki/bin/view/AliEn/Home

[6] PROOF, http://root.cern.ch/root/PROOF.html

[7] CERN Savannah, https://savannah.cern.ch/

[8] RGlite and GAW documentation, http://wiki.gsi.de/cgi-bin/view/Grid/RGLiteAndGAW

[9] GSI’s D-Grid Wiki, http://wiki.gsi.de/cgi-bin/view/Grid/WebHome#D_Grid_Initiative

[10] WMProxy API,

http://trinity.datamat.it/projects/EGEE/wiki/wiki.php?n=WMProxyAPI.APIDocumentation

[11] OLD-problematic JRA1: Data Management site, http://cern.ch/egee-jra1-dm/,

http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/doc.htm

[12] Grid (Lab) Grid Application Toolkit, http://www.gridlab.org/WorkPackages/wp-1/

[13] “Simple API for Grid Applications (SAGA)”, Thilo Kielmann (Vrije Universiteit,

Amsterdam), http://www.ggf.org/GGF17/materials/319/kielman-ggf17.pdf

[14] GSI’s PROOF activity, http://wiki.gsi.de/cgi-bin/view/Grid/TheParallelRootFacility

[16] GSI’s PROOF activity, GridKa School 2005 “Hands On ROOT / PROOF”,

http://gks05.fzk.de/

[17] Boost C++ Libraries, http://www.boost.org/

[18] Simple API for Grid Applications (SAGA), http://wiki.cct.lsu.edu/saga/space/start

[19] Grid source forge, “Project: SAGA-RG”, https://forge.gridforum.org/projects/saga-rg/

 45

http://alien.cern.ch/twiki/bin/view/AliEn/Home
http://glite.web.cern.ch/glite/
http://root.cern.ch/
http://alien.cern.ch/twiki/bin/view/AliEn/Home
https://savannah.cern.ch/
http://trinity.datamat.it/projects/EGEE/wiki/wiki.php?n=WMProxyAPI.APIDocumentation
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/doc.htm
http://www.gridlab.org/WorkPackages/wp-1/
http://www.ggf.org/GGF17/materials/319/kielman-ggf17.pdf
http://wiki.gsi.de/cgi-bin/view/Grid/TheParallelRootFacility
http://gks05.fzk.de/upload/Exercises/exercises.html
http://gks05.fzk.de/
http://www.boost.org/
http://www.boost.org/
http://wiki.cct.lsu.edu/saga/space/start
https://forge.gridforum.org/projects/saga-rg/

	Abstract
	Introduction
	Distributed parallel data analysis
	The ALICE model of distributed and parallel analysis
	Batch Interactive Data Analysis with AliEn and ROOT
	Interactive Data Analysis with AliEn and PROOF
	ALICE VOBox and gLite

	Gap Analysis
	Model description
	The Model’s “road map”
	The Model’s criteria for success
	Development Environment
	Grid middleware
	ROOT

	Design and implementation of the ROOT plug-in for gLite
	gLite API Wrapper
	GAW Core Manager
	GAW Job Manager
	GAW Catalog Manager
	GAW Persistence Manager
	GAW Configuration Manager
	GAW Log Engine

	RGLite plug-in
	RGLite Tests & Samples

	Low-level Gaps
	ROOT Framework
	Grid Interface
	TGridJob::JobID
	GetJobOutput is missing

	Third-party Gaps
	gLite middleware in general
	gLite test-bed installation and configuration
	gLite and Operating Systems
	gLite internal modules and components
	gLite Logs
	gLite UI
	gLite Documentations and WEB sites

	gLite API
	API Installation
	Library dependencies
	API modules dependencies
	LCG API modules vs. gLite API modules
	LFC API, LFC server host name

	Design concept and development plan
	Local PROOF cluster
	“Marriage” of the PROOF and gLite
	Complete GAW and RGlite plug-in implementation
	Deployment
	Implementation for other Grid MW
	Investigate other Grid API Interfaces
	GAT
	SAGA

	References

