

DataGr id

J O B D E S C R I P T I O N L A N G U A G E
H O W T O

 Document identifier: DataGrid-01-TEN-0102-0_2

 Date: 17/12/2001

 Work package: WP1

 Partner: Datamat SpA

 Document status DRAFT

 Deliverable identifier:

Abstract: This note provides a description of the DataGrid Job Description Language

IST-2000-25182 PUBLIC 1 / 1

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

JOB DESCRIPTION LANGUAGE

HOWTO

Date: 17/12/2001

Delivery Slip

 Name Partner Date Signature

From Fabrizio Pacini Datamat
SpA 17/12/2001

Verified by Stefano Beco Datamat
SpA 17/12/2001

Approved by

Document Log

Issue Date Comment Author

0_0 28/05/2001 First draft Fabrizio Pacini

0_1 13/09/2001 Annex on JDL attributes updated Fabrizio Pacini

0_2 17/12/2001
Document updated according to
comments received from
Applications WPs.

Fabrizio Pacini

Document Change Record

Issue Item Reason for Change

Files

Software Products User files

Word 97 DataGrid-01-TEN-0102-0_2-Document

Acrobat Exchange 4.0 DataGrid-01-TEN-0102-0_2-Document.pdf

IST-2000-25182 PUBLIC 2 / 2

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

JOB DESCRIPTION LANGUAGE

HOWTO

Date: 17/12/2001

CONTENT

1. INTRODUCTION ... 4
1.1. OBJECTIVES OF THIS DOCUMENT ... 5
1.2. APPLICATION AREA ... 5
1.3. APPLICABLE DOCUMENTS AND REFERENCE DOCUMENTS ... 5
1.4. DOCUMENT EVOLUTION PROCEDURE.. 6
1.5. TERMINOLOGY.. 6

2. EXECUTIVE SUMMARY... 7

3. CLASSIFIED ADVERTISEMENT LANGUAGE.. 8
3.1. OVERVIEW.. 8
3.2. TYPES AND VALUES .. 11
3.3. EXPRESSIONS AND EVALUATION SEMANTICS.. 12

3.3.1. ClassAd Expressions... 12
3.3.2. List Expressions .. 12
3.3.3. Literals ... 13
3.3.4. Operations ... 13
3.3.5. Attribute References.. 17
3.3.6. Circular Expression Evaluation ... 20
3.3.7. Function Calls.. 21

4. DESCRIBING ENTITIES... 24
4.1. CE ACCESS CONTROL.. 24
4.2. RESOURCE CONSTRAINTS... 26

5. ANNEXES ... 28
5.1. JDL ATTRIBUTES.. 28

IST-2000-25182 PUBLIC 3 / 3

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

JOB DESCRIPTION LANGUAGE

HOWTO

Date: 17/12/2001

1. INTRODUCTION
The growing emergence of large scale distributed computing environments such as
computational grids, presents new challenges to resource management, which cannot be
met by conventional systems that employ relatively static resource models and centralised
allocators.
A principal consideration of resource management systems is the efficient assignment of
resources to customers. The problem of making such efficient assignments is referred to as
the resource allocation problem and it is commonly formulated in the context of a scheduling
model that includes a system model. A system model is an abstraction of the underlying
resources, to describe the availability, performance characteristics and allocation policies of
the resources being managed.
In a distributively owned environment, the owner of a resource has the right to define its
usage policy, which may be very sophisticated. For example, the policy may state that a job
can run on a workstation only if it belongs to a particular research group, or if it is run
between a well-determined time period of the day. Distributed ownership together with
heterogeneity, resource failure and evolution make it impossible to formulate a monolithic
system model, there is therefore a need for a resource management paradigm that does not
require such a model and that can operate in an environment where resource owners and
customers dynamically define their own models.
A fundamental notion for workload management in any such distributed and heterogeneous
environment is entities (i.e. servers and customers) description, which is accomplished with
the use of a description language. In the following of this document we describe in detail the
design goals, structure and semantics of a Job Description Language that can be used as
the language substrate of distributed frameworks, the Classad language.

The classified advertisement (classad) language is a symmetric description language (both
servers and customers use the same language to describe their respective characteristics,
constraints and preferences) whose central construct is the classad, a record-like structure
composed of a finite number of distinct attribute names mapped to expressions. A classad is
a highly flexible and extensible data model that can be used to represent arbitrary services
and constraints on their allocation.
Main novel aspects of this framework can be summarised by the following three points that
will be detailed in the next sections:

– Classads use a semi-structured data model, so no specific schema is required by the
resource management system, allowing it to work naturally in a heterogeneous
environment

– The classad language folds the query language into the data model. Constraints (i.e.,
queries) may be expressed as attributes of the classad.

– Classads are first-class objects in the model. They can be arbitrarily nested, leading
to a natural language for expressing resource aggregates or co-allocation requests.

IST-2000-25182 PUBLIC 4 / 4

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

WP1 - WMS SOFTWARE

ADMINISTRATOR AND USER GUIDE –
DATAGRID-01-TEN-0118-0_0 –

Date: 17/12/2001

1.1. OBJECTIVES OF THIS DOCUMENT
This HowTo provides a short guide to the use of the Classad language. It summarises the
main goals this language has been designed to meet and describes the rules governing it.

1.2. APPLICATION AREA
Users of the DataGrid WMS software can refer to this document for learning hot to build jobs
descriptions for submitting their applications.

1.3. APPLICABLE DOCUMENTS AND REFERENCE DOCUMENTS
Applicable documents
[A1] Matchmaking: Distributed Resource Management for High Throughput Computing Proceedings of

the Seventh IEEE International Symposium on High Performance Distributed Computing,
July 28-31, 1998, Chicago, IL.

[A2] Matchmaking Frameworks for Distributed Resource Management Ph.d Dissertation of Rajesh
Raman, October 2000

[A3] JDL Attributes - DataGrid-01-NOT-0101-0_4 – Decemeber 17, 2001, Rome
(http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4.pdf)

Reference documents
[R1] WP1 - WMS Software Administrator and User Guide – DataGrid-01-TEN-0118-0_0 –

December 17, 2001, Rome
(http://www.infn.it/workload-grid/docs/DataGrid-01-TEN-0101-03-Document.pdf)

IST-2000-25182 PUBLIC 5 / 5

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

1.4. DOCUMENT EVOLUTION PROCEDURE
The content of this document will be subjected to modification according to the following
events:
• Comments received from WP1 and/or other DataGrid Project members,
• Changes/evolutions/additions to the Job Description Language.

1.5. TERMINOLOGY
Definitions
Condor Condor is a High Throughput Computing (HTC) environment that can

manage very large collections of distributively owned workstations

Glossary
CE Computing Element
classad Classified advertisement
GIS Grid Information Service (aka MDS)
JDL Job Description Language
JSS Job Submission Service
LRMS Local Resource Management System
MDS Metacomputing Directory System (aka MDS)
PM Project Month
RB Resource Broker
SE Storage Element
TBC To Be Confirmed
TBD To Be Defined
UI User Interface
WMS Workload Management System
WP Work Package

IST-2000-25182 PUBLIC 6 / 6

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

2. EXECUTIVE SUMMARY
This document comprises the following main sections:
Section 3: Classified Advertisement Language

Provides a detailed description of properties and rules governing the ClassAd language.
Section 4: Describing Entities

Describes how entities (i.e. jobs and resources) can be described using the ClassAd
language features.

Section 5: Annexes
Describes in detail the set of JDL attributes that are meaningful and are used for
describing jobs together with their requirements within the DataGrid project.

IST-2000-25182 PUBLIC 7 / 7

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

3. CLASSIFIED ADVERTISEMENT LANGUAGE

3.1. OVERVIEW
The Job Description Language (JDL) adopted within the DataGrid WMS is the Classified
Advertisement language defined by the Condor Project (see at the URL
http://www.cs.wisc.edu/condor/classad/) for describing jobs, workstations, and other
resources.
The classad language is a simple expression-based language that enables the specification
of many interesting and useful resource and customer policies facilitating the operation of
identification and ranking of compatible matches between resources and customers. It has
as its major goal to allow the easy matching between resources and requests, to correctly
have jobs executed on the Grid.
The Classad language is therefore the language "spoken" by the WMS components that are
directly involved in the job submission process i.e. UI, RB and JSS. It is based on simple
descriptional statements like, for instance,

UserContact = "Mario.Rossi@esa.int";

 RetryCount = 5;

therefore in the general format

attribute = value;

where values can be of different types : numeric, strings, booleans, timestamps etc.
Some of these attributes are used to describe the technical characteristics of the job to be
submitted to pass information to the RB, e.g. the Executable and the standard input StdInput
attributes:

Executable = "sim.exe";

StdInput = "dataset.in"

while some other attributes are used to specify requirements for a computing element which
is supposed to be found by the RB and to be the executor of the given Job, e.g. the
Requirements and Rank attributes, specifying a given set or constraints and preferences on
the executor node to be found. The requirements statements syntax looks as follows

Requirements = other.OpSys == "RH 6.2" && other.Arch == "INTEL";

We notice here that we have introduced the prefix "other." before the attribute name, that
specifies that the given statement (OpSys = "RH 6.2", for instance) refers to the possible
candidate machine. When not specified the prefix assumes the default value "self.",
indicating that the statement refers to the job characteristics description.

IST-2000-25182 PUBLIC 8 / 8

http://www.cs.wisc.edu/condor/classad/

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

Therefore the main goals the ClassAd language has been designed to meet can be
summarised by the following points:

- Symmetric: a key requirement of the advertisement language is to be symmetric with
respect to both providers and requesters. The implication of this requirement is that
the advertisement language must be powerful and flexible enough to subsume the
functionality of traditional resource description and resource selection languages
commonly found in conventional resource management systems and also provide the
dual properties of customer description and customer selection. This means that both
customer and resources (i.e. jobs and computing elements) can be described through
classads that can contain constraints respectively on resources and customers.

- Semi-structured: the proscription of centralised control (and hence centralised
schema management) has naturally suggested the use of a semi-structured model as
the basis of the description language. Semi-structured data models (such as XML)
are finding widespread acceptance due to their flexibility in managing heterogeneous
and distributed information.

- Declarative: the advertisement language is required to be declarative rather than
procedural. By this it is meant that advertisements should describe notions of
compatibility qualitatively rather than specifying a procedure for determining
compatibility.

- Simple: it is extremely important for an advertising language to be simple both
syntactically and semantically. A complex specification language is less amenable to
efficient and correct implementation. Complex languages also compound the process
of specifying and understanding policies, making both manual and automatic policy
management difficult.

- Portable: the language must be amenable to efficient implementation on various
hardware and software platforms. Thus, it is not reasonable to introduce language
features that require specific features of the host architecture that may not be
widespread.

As already mentioned the central construct of the language is the classad, which is a record-
like structure composed of a finite number of distinctly named expressions, as illustrated in
Figure 1. Each named expression is called an attribute. Classads are used as attribute lists
by entities to describe their characteristics, constraints and preferences. Since whole
expressions (and not just scalar values) are bound to attribute names, classads can naturally
accommodate the predicate-like constraints used by principals to define their policy
requirements. Similarly, preferences are specified as expressions that are evaluated to
numeric values denoting the “goodness" of candidate matches.

[

Executable = "WP1testF";

StdOutput = "sim.out";

StdError = "sim.err";

InputSandbox = {"/home/datamat/sim.exe", "/home/datamat/DATA/*"};

OutputSandbox = {"sim.err","sim.err","testD.out"};

Rank = other.TotalCPUs * other.AverageSI00;

Requirements = other.LRMSType == "PBS" \

&& (other.OpSys == "Linux RH 6.1" || other.OpSys == "Linux RH 6.2") && \

self.Rank > 10 && other.FreeCPUs > 1;

RetryCount = 2;

IST-2000-25182 PUBLIC 9 / 9

Arguments = "file1";

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

InputData = "LF:test10099-1001";

ReplicaCatalog = "ldap://sunlab2g.cnaf.infn.it:2010/rc=WP2 INFN Test Replica
Catalog,dc=sunlab2g, dc=cnaf, dc=infn, dc=it";

DataAccessProtocol = "gridftp";

OutputSE = "grid001.cnaf.infn.it";

]

Figure 1: A classad describing a submitted job

The classad language differentiates between expressions and values: expressions are
evaluable language constructs obtained by parsing valid expression syntax, whereas values
are the results of evaluating expressions. The classad language employs dynamic typing, so
only values (and not expressions) have types. The language has a rich set of types and
values which includes many traditional values (numeric, string, boolean), non-traditional
values (timestamps, time intervals) and some esoteric values, such as undefined and error.
Undefined is generated when an attribute reference cannot be resolved, and error is
generated when there are type errors. In a sense, all classad operators are total functions,
since they have a defined semantics for every possible operand value, facilitating robust
evaluation semantics in the uncertain semi-structured environment.
Classads may be nested to yield a hierarchical name-space, in which case lexical scoping is
used to resolve attribute references. An attribute reference made from either customer or
resource classad of the form "other.attribute-name" refers to an attribute named attribute-
name of the other advertisement. In addition, every classad has a built-in attribute self
which evaluates to the innermost classad containing the reference, so the reference
"self.attribute-name" refers to an attribute of the same classad containing the reference. If
neither self nor other is mentioned explicitly, the evaluation mechanism assumes the self
prefix. For example, in the Requirements of the job-ad in Figure 1, the sub-expression
other.FreeCPUs > 1 expresses the requirement that the target machine has more than
one free CPU for running the job. On the other hand the expression self.Rank > 10
could also have been written Rank > 10.
A reference to a non-existent attribute evaluates to the constant undefined. Most operators
are "strict" with respect to this value, meaning with this that if either operand is undefined,
the result is undefined. In particular, comparison operators are strict, so that
other.MinPhysicalMemory > 32,

other.MinPhysicalMemory == 32,

other.MinPhysicalMemory != 32,

and
!(other.MinPhysicalMemory == 32)

all evaluate to undefined if the target classad (i.e. the classad describing the resource,
whose attributes are referred with the “other.” Prefix) has no MinPhysicalMemory
attribute. The Boolean operators || and && are non-strict on both arguments, so that
other.MaxRunningJobs >= 10 || other.MaxTotalJobs >= 100

evaluates to true whenever either of the attributes MaxRunningJobs or MaxTotalJobs
exists and satisfies the indicated bound. There are also non-strict operators is and isnt,
which always return boolean results (not undefined), allowing explicit comparisons to the
constant undefined as in:
other.MinPhysicalMemory is undefined || other.MinPhysicalMemory < 32

IST-2000-25182 PUBLIC 10 / 10

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

3.2. TYPES AND VALUES
We can view types as a partitioning of the universe of values in the language, where every
partition is non-empty. To aid in the unambiguous definition of language semantics, we
define fixed internal implementation representations for certain values (such as numbers),
while leaving representations of other values unspecified. Values in the classad language
can be grouped in two main categories, literals and aggregates and may be one of the
following types:

Literals

- Undefined: the undefined type has exactly one value: the undefined value. As its name

suggests, the undefined value represents incomplete or unknown evaluation results due
to absence of information. The adoption of a semi-structured data model requires the
inclusion of an undefined (or similar) value for robust evaluation semantics.

- Error: the error type has exactly one value: the error value. Similar to the undefined
value, the error value plays an important part in securing robust evaluation semantics in
semi-structured environments. While the undefined value represents missing
information, the error value represents incorrect or incompatible information, and is
usually generated when operators are supplied with values that are outside the domains
of their operands. For example, the quotient of a number and a string is error.

- Boolean: there are exactly two distinct boolean values: false and true. Unlike their C
and C++ counterparts, boolean values are not considered numeric values, and therefore
cannot be directly used in numeric expressions.

- String: string values are finite sequences of non-zero 8-bit ASCII characters (e.g., "foo",
"bar", etc.). There is no a priori limit of the length of string values.

- Integer: integer values are signed 32-bit two's complement numbers (e.g., 314, -17, 0,
etc.). May be expressed in hex or octal (e.g., 0xff, 0777, etc.)

- Real: real values are IEEE-754 double precision numbers (e.g., 3.14159, 2.781, etc.).
- Absolute Time: absolute time values are non-negative discrete integral values recording

the number of seconds elapsed between the UNIX epoch (i.e. 1 January 1970) and the
timestamp represented by the value (e.g. “Thu Dec 20 18:21:07 2001 (CDT) -06:00”).
Absolute time values must be able to represent the largest integer value as a valid
timestamp.

- Relative Time: relative time values are discrete integral values that represent time
intervals in seconds (e.g. “18:21:32”, “3d19:49:15”). Relative time values may be negative
or zero. The cardinality of the relative time value set must be at least as large as the set
of integer values.

Aggregates

Classad: classad values are sets of identifier, expression equalities separated by
semicolons and enclosed between square brackets, where each identifier is distinct (ignoring
case) from the others, e.g.

IST-2000-25182 PUBLIC 11 / 11

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

 [OpSys = “Solaris8”]

[FreeCPUs = 4; MaxRunningJobs = 100]

Identifiers are strings of alphanumeric characters and underscores, which begin with non-
numeric characters. Classad values additionally indicate (directly or indirectly) the presence
of a parent classad (or parent scope), which is the closest enclosing classad. If a classad is
not lexically nested, it is called a toplevel (or root) classad, and its corresponding value does
not have a parent scope component.
- List: list values are finite sequences of expressions.

3.3. EXPRESSIONS AND EVALUATION SEMANTICS
The majority of the classad language is straightforward and familiar, with some modest
extensions. Most of the subtlety of the classad language lies in the treatment of attribute
references, which operate in a lexical scoping formalism, but may also explicitly traverse the
hierarchical classad namespace during an evaluation to access an attribute. All expression
evaluations occur in the context of a given classad, which may be nested arbitrarily deep
inside other classads. However, for any given expression evaluation, there is a single unique
outermost classad that is not nested. We designate this classad the root (or toplevel)
classad.

3.3.1. ClassAd Expressions
A classad is constructed with the classad construction operator [], and it is sequence of zero
or more pairs (name,expression) separated by semi-colons as shown in the syntax schema
below:

[name0 = expr0 ; name1 = expr1 ; ; namen = exprn]

Each namei is a unique identifier and each expri is an expression. A classad expression
evaluates to a classad value. Every classad value has three implicit attributes: self,
parent and root. These attributes are reserved in the concrete syntax and therefore may
not be used as any of the namei.
Each classad defines a scope from which attributes may be looked up. Classads may be
arbitrarily nested
(e.g. [foo=10; bar=[adr=20; adl=30]]).

3.3.2. List Expressions
A list is constructed with the list construction operator {} and it is a sequence of zero or more
expressions separated by commas as illustrated below:

{expr0 , expr1 , , exprn }

IST-2000-25182 PUBLIC 12 / 12

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

A list expression evaluates to a list value, which can be later used as an array through use of
the subscript operator, moreover they can be arbitrarily nested (e.g.,
{10,[foo={10,3,5}],{17,[bar=3]}}).

3.3.3. Literals
Literals are atomic expressions that directly evaluate to scalar values (i.e., non-classad and
non-list values). In this sense, literals directly represent the values that they evaluate to.
Examples of literal expressions for values of the various types are provided below. With the
exception of string literals, all literals are case insensitive.

- Undefined: undefined
- Error: error
- Boolean: false, true
- String: "foo", "bar\n\t" (C-style escapes are supported.)
- Integer: 10, 0xff (Hex), 0600 (Octal)
- Real: 3.141, 6.023e23, 2K (i.e., 2048.0). The suffixes B, K, M, G and T representing

scale factors of 20, 210, 220, 230 and 240 are all supported.
- Absolute Time: 'Thu Aug 17 18:21:07 2000 (CDT) -06:00'
- Relative Time: '18:21:32', '3d19:49:15'

3.3.4. Operations
Operations are expressions that combine other expressions by means of unary, binary and
ternary operators. The operators are essentially those of the C language, with certain
operators excluded (e.g., pointer and dereference operators) and others added (e.g., non-
strict comparison). Thus, a rich set of arithmetic, logic, bitwise and comparison operators are
defined. The set of supported operators and their relative precedences are summarized in
Figure 3. In the following specification of operator semantics, it is to be assumed that unless
otherwise specified, operators are strict with respect to the undefined and error values in all
places, with error taking precedence over undefined.

Operator
class

Operators Associativity

Primary [] Left to right
Unary - + ! ~ Right to left
Multiplicative * / % Left to right
Additive + - Left to right
Shift << >> >>> Left to right
Relational < <= > >= Left to right
Equality == != is isnt Left to right
Bitwise AND & Left to right

IST-2000-25182 PUBLIC 13 / 13

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

Operator
class

Operators Associativity

Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left

Table 1 Classad language operators in decreasing order of precedence

Additionally, since most operators are meaningfully defined only over certain values, we
define operations to evaluate to error when values outside the domain of an operator are
supplied as operands. In other words, unless otherwise specified, the following implicit rules
must be applied (in order) to all following specifications:

- Strictness Rule: if any operand to an operator is undefined (error), the resulting
value of the operation is also undefined (error). If both undefined and error are
simultaneously supplied to an operator, the result is error.

- Domain Rule: if the operands to the operator are outside the operator's domain, the
resulting value of the operation is error.

We now informally describe the behaviours of operators in the classad language.

3.3.4.1. Arithmetic Operators
All arithmetic operators are binary, and follow both Strictness and Domain Rules. The
domain for arithmetic operators is numeric values, i.e., the integer and real values. With the
inclusion of the following rules, arithmetic in the classad language occurs in "the natural
way".

1. If the divisor is zero in the case of the division (/) and remainder (%) operators, the
evaluation result is error.

2. If one operand is integer and the other is real, the integer operand is promoted to a
real, and the evaluation proceeds as a computation of real numbers. Unless the
expression violates any of the previous rules, the type of the evaluation result is real.

3.3.4.2. Comparison Operators
All comparison operators are binary and, with the exception of the is and isnt operators,
follow both Strictness and Domain Rules. The following rules define the behavior of strict
comparison.

1. Only values of the same type may be compared. The only exception to this rule is that
integers and reals may be compared: the integer is promoted to a real, and
comparison proceeds as with real values.

2. Only scalar values may be compared. Comparison of aggregate values (i.e., classads
and lists) results in error.

IST-2000-25182 PUBLIC 14 / 14

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

3. (Boolean specialization) The false value is defined to be less than the true value.
4. (String specialization) All string comparisons are case insensitive, so "FOO", "fOO"

and "fOo" are all equivalent. Strings are ordered lexicographically, ignoring case.
5. (Absolute time specialization) An absolute time value is defined to be less than

another if the timestamp it represents temporally precedes the timestamp represented
by the other comparand.

6. (Relative time specialization) Shorter intervals are less than longer intervals.

The non-strict comparison operators is and isnt implement the "is identical to" and "is not
identical to" predicates, and can therefore be used to test if given values are undefined or
error. By definition, these operators follow neither Strictness nor Domain Rules, these
operators always evaluate to true or false (e.g. undefined is 10 evaluates to false,
while error is error evaluates to true).
The following rules, when applied in order, summarize the behavior of the is operator (the
isnt operator is simply the boolean negation of the is operator):

1. If the types of the two comparands differ, the result of the comparison is false.
2. If the type of one comparand is undefined (error), the result of the operation is true if

the other comparand is also undefined (error), and false otherwise.
3. Comparison of aggregate values is not allowed, so the result of the is operator is

false if either operand is an aggregate value.
4. Comparison of string values is case sensitive. This behavior is different than that of

the strict comparison operators.
5. Otherwise, the is operator behaves exactly like the equals comparison operator (==).

3.3.4.3. Bitwise Operators
The bitwise operators follow both Strictness and Domain rules, and are applicable only to
integer values. The operators behave identically to their counterparts in the Java
programming language.

3.3.4.4. Logic Operators
The logic operators OR (||) and AND (&&) are non-strict operators, and therefore do not
follow the implicit Strictness Rule. Instead the operators follow the truth tables supplied below
(Table 2), in which T, F, U and E stand for true, false, undefined and error respectively. If
any operand does not evaluate to a boolean, undefined or error value, the result of the
operation is error.

AND F T U E OR F T U E NOT
F F F F E F F T U E F T
T F T U E T T T T E T F
U F U U E U U T U E U U

IST-2000-25182 PUBLIC 15 / 15

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

E E E E E E E E E E E E

Table 2 Logic operators truth tables

3.3.4.5. Miscellaneous Operators

3.3.4.5.1. The Subscript Operator
The subscript operator is a binary operator that follows both Strictness and Domain Rules. It
requires one list type operand (i.e., an array), and one integer type operand (i.e., an index). If
the supplied index is not a non-negative integer less than the length of the array, the
operation evaluates to undefined. Otherwise, the result of the operator is the value of the
index'th expression in the array (with zero based indexing like in C/C++; e.g. {10, 17*2,
30}[1] => 34).

3.3.4.5.2. The Conditional Operator
The conditional operator is the only ternary operator in the classad language. It follows the
Strictness and Domain rules only with respect to its first operand (the condition), which is
required to be boolean. The result of the evaluation is the value of the second operand (the
true consequent) if the condition evaluates to true, and the value of the third operand (the
false consequent) if the condition evaluates to false.
The conditional operator is not strict for the two consequents (e.g. true?10:undefined
evaluates to 10, and false?error:"foo" evaluates to "foo").

IST-2000-25182 PUBLIC 16 / 16

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

3.3.5. Attribute References
Attribute references in the classad language are similar to both variable references in
programming languages like C and C++, and filenames in the UNIX filesystem. In the
following description of the three variants of attribute reference expressions, attr denotes a
case-insensitive identifier and expr denotes an arbitrary expression:

attr
This attribute reference variant has two possible behaviors. If attr is one of the following
special built-ins, the reference evaluates to certain predefined values.

1. The self attribute reference evaluates to the classad that serves as the current scope
of evaluation.

2. The root attribute reference evaluates to the classad that serves as the root of the
evaluation.

3. The parent (or super) attribute reference evaluates to the classad that is the lexical
parent of the current evaluation scope. If the current evaluation scope is the root
scope, the parent attribute reference evaluates to undefined.

If the reference is not one of the above three special built-ins, the reference evaluates to the
value of the expression bound to the attribute named attr in the closest enclosing scope.
(The obtained expression must be evaluated in the same scope that it was found.) If no such
attribute is found, the reference evaluates to the undefined value. Some examples are
reported below (evaluated expressions are the ones in bold):

Top-level ClassAd Value
[a=1;b= a] 1

[a=2;b=[c=1;d= a]] 2

[a=2;b=[c=1;d= a+f];e=[f=10]] undefined

[a=3;b=[c=1;d=[e=5;f= a+c+e]]] 9

[a=3;b=[a=2;c=1;d=[e=5;f= a+c+e]]] 8

.attr
This attribute reference variant evaluates to the value of the expression bound to the name
attr in the root scope, when evaluated in the root scope. If the root scope does not contain an
attribute named attr, the value of the reference is undefined. Some examples are reported
below (evaluated expressions are the ones in bold):

Top-level ClassAd Value
[a=2;b=[a=1;d= .a]] 2

[a=3;b=[a=1;d=[a=5;f= a+.a]]] 8

[a=2;b=[c=1;d= .c]] undefined

IST-2000-25182 PUBLIC 17 / 17

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

expr.attr
This variant first evaluates the expression expr, which must evaluate to a classad. (If this
expression evaluates to undefined, the value of the entire reference is undefined.
Otherwise, if the value is not a classad, the value of the reference is error.) The value of the
reference is the value of the expression bound to the attribute named attr in the closest
enclosing scope beginning with the classad scope identified by expr. As with previous
variants the identified expression must be evaluated in the scope it was obtained from, and if
no such expression exists, the value of the reference is undefined. Some examples are
reported below (evaluated expressions are the ones in bold):

Top-level ClassAd Value
[a=1;b= [c=5].c] 5

[a=1;b= [c=5].a] 1

[a=1;b=[a=2;c=[b=.a]];d= .b.c.a] 2

[a=1;b=[a=2;c=[b=.a]];d= .b.c.b] 1

[a=1;b=[a=2;c=[b=a]];d= .b.c.b] 2

[a=1;b=[a=2;c=[b=.a]];d= .a.b.a.b] error
 [a=1;b=[c=2];d=[super=.b]].d.c 2

[a=1;b=[a=7;c= super.a]] 1

In the next Figure 2 is reported another example of attribute references that comprises most
of the cases we have dealt with:

IST-2000-25182 PUBLIC 18 / 18

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

[

 adl=[

other = .adr.self;

self =[Owner = "Ms. Foo";

 Arch = "INTEL";

 MemorySize = 32M;

 Requirements = other.Owner != "foo"

];

];

 adr=[

other = .adl.self;

self = [Owner = "Mr. Bar";

 MemorySize = 16M;

 Requirements = (other.Arch=="INTEL) &&

(other.MemorySize > self.MemorySize)

]

]

]

Figure 2 Attribute References – 1

Finally, consider the following classad

 [

 a = 17;

 b = "foo";

 c = { "x", "y", 3*a };

 d = [

 a = 23;

 b = 15;

 c = []

 d = .a;

]

 e = '00:15:00';

]

Figure 3 Attribute References – 2

IST-2000-25182 PUBLIC 19 / 19

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

Hereafter are reported some expressions and their resulting values when evaluated in the
context of the classad in Figure 3.

Expression Result
a 17

x undefined

x+10 undefined

x || true true

d.a 23

d.b 15

d.self [a = 23 ; b = 15 ; c = [] ; d = .a]

d.c []

d.c.parent [a = 23 ; b = 15 ; c = [] ; d = .a]

d.b.a error

d.parent.c { "x", "y", 3*a }

d.parent.c[2] 51 (17*3)
d.d 17

e*4 '01:00:00'

Table 3 Expression evaluation

3.3.6. Circular Expression Evaluation
It is trivially possible for expressions in the classad language to refer to each other in a
manner that would lead to an infinite loop during expression evaluation. For example, in the
classad [a=b; b=a], it is not possible to determine the value of either attribute. The
classad language defines that circular expression evaluation result in the undefined value.
Two examples are reported below:
- Circularities in expression evaluation: [b = a; a = b].a evaluates to undefined
- Circularities in scoping: [a=[super=.b]; b=[super=.a]].x evaluates to

undefined

IST-2000-25182 PUBLIC 20 / 20

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

3.3.7. Function Calls
The classad language provides a number of built-in utility functions to perform tasks such as
string pattern matching, obtaining the current time of day, converting values from type to
another and testing value types.
User-defined functions may not be defined. The syntax of a function call is “name(arg0 ; arg1 ;
. . . . ; argn)”; for example in the context of the classad of Figure 3, we have strcat(b,
"bar", a) that evaluates to "foobar17".
As with operators, most functions are strict with respect to undefined and error on all
arguments. However, some functions are non-strict, and these exceptions are noted. The
name of the function is not case sensitive. A comprehensive list of functions and their
behaviors is provided hereafter:

Type predicates (Non-Strict)
- IsUndefined(V) True iff V is the undefined value.
- IsError(V) True iff V is the error value.
- IsString(V) True iff V is a string value.
- IsList(V) True iff V is a list value.
- IsClassad(V) True iff V is a classad value.
- IsBoolean(V) True iff V is a boolean value.
- IsAbsTime(V) True iff V is an absolute time value.
- IsRelTime(V) True iff V is a relative time value.

List Membership
- Member(V,L) True iff scalar value V is a member of the list L.
- IsMember(V,L) Like Member, but uses is for comparison instead of ==. Not strict on

first argument.

Time Queries
- CurrentTime() Get current time (absolute time)
- TimeZoneOffset() Get time zone offset as a relative time
- DayTime() Get current time as relative time since midnight.

Time Construction
- MakeDate(M,D,Y) Create an absolute time value of midnight for the given day. M

can be either numeric or string (e.g., "jan").
- MakeAbsTime(N) Convert numeric value N into an absolute time (number of

seconds past UNIX epoch).
- MakeRelTime(N) Convert numeric value N into a relative time (number of seconds in

IST-2000-25182 PUBLIC 21 / 21

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

interval).

Absolute Time Component Extraction
- GetYear(A) Get integer year (A=absolute time)
- GetMonth(A) 0 = jan;; 11 = dec
- GetDayOfYear(A) 0365 (for leap year)
- GetDayOfMonth(A) 131
- GetDayOfWeek(A) 06
- GetHours(A) 023
- GetMinutes(A) 059
- GetSeconds(A) 061 (for leap seconds)

Relative Time Component Extraction
- GetDays(R) Get days component in the interval (R= relative time)
- GetHours(R) 023
- GetMinutes(R) 059
- GetSeconds(R) 059

Time Conversion
- InDays(T) Convert time value into number of days
- InHours(T) Convert time value into number of hours
- InMinutes(T) Convert time value into number of minutes
- InSeconds(T) Convert time value into number of seconds

String Functions
- StrCat(V1, . . . , Vn) Concatenates string representations of values V1 through Vn
- ToUpper(S) Upcases string S
- ToLower(S) Downcases string S
- SubStr(S,offset [,len]) Returns substring of S. Negative offsets and lengths count from

the end of the string.
- RegExp(P,S) Checks if S matches pattern P (both args must be strings).

Type Conversion Functions
- Int(V) Converts V to an integer. Time values are converted to number of

seconds, strings are parsed, bools are mapped to 0 or 1. Other values
result in error

- Real(V) Similar to Int(V), but to a real value.
- String(V) Converts V to its string representation

IST-2000-25182 PUBLIC 22 / 22

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

- Bool(V) Converts V to a boolean value. Empty strings, and zero values
 converted to false; non-empty strings and non-zero values converted to
 true.
- AbsTime(V) Converts V to an absolute time. Numeric values treated as seconds

past UNIX epoch, strings parsed as necessary.
- RelTime(V) Converts V to an relative time. Numeric values treated as number of

 seconds, strings parsed as necessary.

Mathematical Functions
- Floor(N) Floor of numeric value N
- Ceil(N) Ceiling of numeric value N
- Round(N) Rounded value of numeric value N

IST-2000-25182 PUBLIC 23 / 23

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

4. DESCRIBING ENTITIES
We will provide in this section some examples of job and computational resources
descriptions made through the presented classad language. Our goal is not only to show the
way an entity can publish its detailed characteristics but also to demonstrate the flexibility of
the mechanism in expressing fairly sophisticated policies.
 As already mentioned in the previous sections, the classad language is extensible and semi-
structured, hence each job/resource owner/administrator can freely include in its
advertisements all new attributes that are necessary or relevant for its branch-specific
description. Anyway, since advertisements are made to be used in a matchmaking process
by the resource management system, all the entity description shall conform to a set of
conventions (a protocol), which binds meanings to certain attributes that will be used for
special purposes. For example, in our framework we will define that in any classad shall
contain the attributes named Requirements and Rank that will be respectively treated as
the constraints and preferences expressed by the advertising entity. Note that in such a
context it is interest of the involved parties to provide the better-detailed description as
possible in order to obtain the best match (see Annex 5 at the end of this document for a
preliminary list of common attributes that can be used to build entities descriptions for
Datagrid purposes).

4.1. CE ACCESS CONTROL
Figure 4 shows a classad that describes a CE and demonstrates the way to express access
control on a resource by means of the language features. The Requirements attribute
indicates that the CE only accepts to run applications from authorised members i.e. members
whose certificate subject is listed in the grid-mapfile of the CE.. The Rank expression states
that jobs with a required lower number of retrials on failure have higher priority than other
jobs.
[

CEId = "lxde01.pd.infn.it:2119/jobmanager-lsf-grid01";

GlobusResourceContactString = "lx01.pd.infn.it:2119/jobmanager-lsf";

GRAMVersion = "1.71";

Architecture = "INTEL";

OpSys = "RH 6.1";

MinPhysicalMemory = 256;

MinLocalDiskSpace = 100;

TotalCPUs = 4;

FreeCPUs = 1;

TotalJobs = 15;

RunningJobs = 4;

IdleJobs = 11;

MaxTotalJobs = 1000;

MaxRunningJobs = 1000;

WorstTraversalTime = 2502;

EstimatedTraversalTime = 131;

AverageSI00 = 23;

IST-2000-25182 PUBLIC 24 / 24

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

MinSI00 = 13;

MaxSI00 = 30;

AuthorizedUser = {"/C=IT/O=INFN/L=Padova/CN=Mario
Rossi/Email=mario.rossi@pd.infn.it",
"/C=IT/O=INFN/L=Milano/CN=Ugo Bianchi
/Email=Ugo.Bianchi@mi.infn.it",
"/O=Grid/O=UKHEP/OU=hep.ph.ac.uk/CN=Tom Scott"};

RunTimeEnvironment = {"CMS3.2"," EO4.2"};

AFSAvailabe = True;

OutboundIP = True;

InboundIP = False;

QueueName = "grid01";

LRMSType = "LSF";

LRMSVersion = "4.0";

Rank = 10 - other.RetryCount;

Requirements = Member(AuthorizedUser, other.CertificateSubject);

]

Figure 4 CE Access Control

It is important to remark that the construction of CEs descriptions in the ClassAd language is
a task performed automatically by the Resource Broker during the matchmaking process and
it is hence never done by the user. This example of resource classad has been reported here
only to show the symmetry property of the ClassAd language.

IST-2000-25182 PUBLIC 25 / 25

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

4.2. RESOURCE CONSTRAINTS
Figure 5 describes a job that has the policy of running only on INTEL machines with sufficient
memory space (in Mbytes), running the LINUX or the Solaris operating system on which
outbound connectivity is allowed (e.g. the job can “initiate” a data transfer, sending and/or
receiving data to/from a remote Internet node). In addition, the Rank expression in the job
classad expresses a preference for running on CEs having the greater number of free CPUs.

 [
 CertificateSubject = "/O=Grid/O=UKHEP/OU=hep.ph.ac.uk/CN=Tom Scott";

Executable = "WP1testF";

Arguments = "datafile1.in 5.56 1024";

StdInput = "sim.dat" ;

StdOutput = "sim.out" ;

StdError = "sim.err" ;

InputSandbox = {"/home/fpacini/DATA/datafile1.in" ,
"/home/fpacini/DATA/sim.dat",
"/home/fpacini/exe/WP1testF",
"/home/fpacini/DATA/file2"};

OutputSandbox = {"sim.err","sim.out"};
InputData = {"LF:test10096-0009" , "LF:test100960010",

"PF:testbed002.cern.ch/home/flavia/ffiles/test10096-
0011"};

ReplicaCatalog = "ldap://sunlab2g.cnaf.infn.it:2010/rc=WP2 INFN Test
Replica Catalog,dc=sunlab2g, dc=cnaf, dc=infn,
dc=ita" ;

DataAccessProtocol = "gridftp";

OutputSE = "lx11.hep.ph.ic.ac.uk";

RetryCount = 6;

Rank = other.FreeCPUs;

Requirements = other.Architecture == "INTEL" && (other.OpSys == "RH
6.2" || other.OpSys == "Solaris 2.6") &&
other.MinPhysicalMemory >= 200 && other.OutboundIP ==
TRUE;

]

Figure 5 Resource Constraints 1

We now present another example of specification of constraint and preferences on
resources. In the example illustrated in Figure 6, the customer requires a CE being an INTEL
machine running the LINUX RH 6.1 operating system on which the is installed the EO4.2
run-time environment. Moreover the local resource management system is required to be
PBS. The Rank expression in the job classad expresses a preference for running on CEs
having a greater number of allowed maximum running jobs and AFS installed.

IST-2000-25182 PUBLIC 26 / 26

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

[

Executable = "/opt/edg/WP1testC";

StdInput = "sim.dat" ;

StdOutput = "sim.out" ;

StdError = "sim.err" ;

InputSandbox = {"/home/fpacini/DATA/file1",
"/home/fpacini/DATA/sim.dat",
"/home/fpacini/DATA/file2"};

OutputSandbox = {"sim.err","sim.out","datafile1.out"};
InputData = {"PF:testbed001.cern.ch/home/ffiles/test10096-0009",

"PF:testbed002.cern.ch/home/ffiles/test10096-0011"};

DataAccessProtocol = "file";

RetryCount = 3;
Rank = other.MaxRunningJobs + (other.AFSAvailabe == True ? 10 : 5);
Requirements = other.Architecture == "INTEL" && other.OpSys == "RH

6.1 && Member(other.RunTimeEnvironment , "EO4.2") &&
other.LRMSType == "PBS";

]

Figure 6: Resource Constraints 2

IST-2000-25182 PUBLIC 27 / 27

Doc. Identifier:
DataGrid-01-TEN-0102-0_2

DECEMBER 17, 2001, ROME

 Date: 17/12/2001

5. ANNEXES

5.1. JDL ATTRIBUTES
The JDL is a fully extensible language (i.e. it does not rely on a fixed schema), hence the
user is allowed to use whatever attribute for the description of a job without incurring in
errors. Anyway only a certain set of attributes (that we will refer to as “supported” attributes)
can be taken into account by the WMS components for scheduling a submitted job. Indeed in
order to be actually used for selecting a resource, an attribute used in a job class-ad needs
to have a correlation with some characteristic of the resources that are published in the GIS
(aka MDS).
The “supported” attributes, their meaning and the way to use them to describe a job are dealt
in detail in document [A3] also available at the following URL:
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4.pdf.

IST-2000-25182 PUBLIC 28 / 28

http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4.pdf

