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Abstract: The understanding and avoidance of space charge induced resonances
is of utmost importance for long storage times in synchrotrons, as they can lead
to halo generation and subsequent beam loss. This report discusses the absence
of structure resonances for heavy-ion operation in SIS100 in the tune quadrant
foreseen for the fast extraction mode, 18.5 < Qy , <19 . Simulations of beam
losses for the duration of the SIS100 accumulation plateau at nominal transverse
space charge conditions with a maximum tune shift of AQJS,C = —0.3 supplement
the discussion.

1 Setup of Beam Dynamics Simulations

The full beam dynamics simulations of a single bunch in SIS100 with nonlinear space charge,
nonlinear thin-lens tracking and nonlinear RF bucket are carried out using the open source
CERN code SixTrackLib [1}[2,3]. The full SIS100 lattice [4] is simulated based on the heavy-ion
fast extraction tune settings, where the working point is scanned in 0.01 intervals across the
tunes 18.55 < Qy,, < 19. The perturbation by the two normal-conducting radiation-hardened
quadrupole magnets in the extraction insertion section will be mitigated by means of the
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SIS100 quadrupole corrector magnets to minimise the implied gradient error. To simplify the
setup, the lattice is assumed to perfectly satisfy the S = 6 super-periodicity and all quadrupole
magnets are taken to be of the cold, super-conducting type.

All beam and machine parameters are listed in Table[L.1]

Table 1.1: Parameters for Uranium-238 Beam Production in SIS100.

Parameter | Value
Horizontal normalised rms emittance ¢, | 5.9 mmmrad
Horizontal geometric KV emittance | 35 mmmrad
Vertical normalised rms emittance €, | 2.5 mmmrad
Vertical geometric KV emittance | 15 mmmrad
Rms bunchlengtho, | 13.2m
Rms momentum deviation o'ap/p, | 0.44 x 1073
Bunch intensity N of U35 | 0.625 x 10!
Max. space charge tune shift AQJS,C -0.30
Chromatic tune spread Q) ,0ap/p, | 0.02
RF voltage (single-harmonic) Vgr | 58.2kV
Harmonic 2 | 10
Kinetic energy | Ei, =200MeV/u
Relativistic § factor | 0.568
Revolution frequency fre, | 157 kHz

The simulations sample the bunch with 1000 macro-particles using an optics-matched 6D
Gaussian phase space distribution. This bunch is tracked through the synchrotron elements
and space charge nodes, 501 of which are placed in intervals of slightly varying length along
the ring. Using more space charge nodes or more macro-particles does not significantly
alter the simulation results. Space charge is modelled as fixed (i.e. non-adaptive) frozen 3D
Gaussian field maps which remain constant throughout the simulation, following the formula
by Bassetti and Erskine [5,6]. The transverse beam size used in the field maps at each space
charge node follows the computed local - and dispersion functions and is based on the initial
transverse emittances. The transverse nonlinear space charge force is modulated with the
longitudinal Gaussian beam profile. Evaluating the initial tune footprint in the simulation
gives a maximum space charge tune shift from the bare working point in the vertical plane of
AQ*;C = —0.3 for the particles in the centre of the bunch.



2 Simulations Results

In a first baseline check, the storage of a zero-current beam in the symmetric lattice is simu-
lated for the duration of the 1 s injection plateau. The scanned tune quadrant exhibits zero
beam loss and constant rms emittances —in line with the absence of external resonance driving
terms in the symmetric ideal lattice.

In a next step we include the fixed frozen space charge (“FFSC”) model in the simulations.
Simulating again the injection plateau duration in the symmetric lattice with FFSC for bunches
of nominal intensity, the Montague stop-band [7] appears around the coupling line Q. = Q,

as seen in Fig.
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Figure 2.1: Symmetric cold lattice. Tune diagram with beam loss from FFSC simulations.

It is important to note that no other resonances significantly limit the present tune quad-
rant based on the symmetric lattice. The reason lies in the absence of low-order structure
resonances crossing through the tune quadrant as opposed to e.g. the SIS18 ring [8]. This
statement will be discussed in the following.

3 Single-particle Resonance Condition

The general (zero intensity) tune condition for betatron resonance [9] reads
kQx+0Qy=m (3.1)

for integer k,¢, m € Z. The order of the resonance is given by n = |k| + |¢| while m marks
the harmonic driving the resonance. Systematic structure resonances are resonances with
a driving harmonic m amounting to a multiple integer of structural symmetries in the ring
lattice, such as the super-periodicity S = 6 or the 84 basic focusing cells.

Figure[3.1]shows the lines where the zero-intensity resonance condition Eq. is satisfied,
where the red colour distinguishes the structure resonances with m = r S for integer r. Normal
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Figure 3.1: Resonance diagram for SIS100 with super-periodicity S = 6 according to the single-
particle Eq. (3:1).



resonances driven by b, are plotted as solid lines, skew resonances driven by a, as dashed
lines. A normal and skew sextupole structure resonance appear on the periphery in the tune
quadrant, going through (Qx, Q,) = (19,18.5) and (18.5,19), respectively. For decapolar order
n =5 we find one normal and one skew structure resonance above and below the coupling line,
crossing further inside the tune diagram. Then, from order n = 7 on and higher, the resonance
diagram is crossed by many structure resonances. Generally speaking it holds that the higher
the order n, the weaker the resonance impact for equally strong a;,, b;,.

4 Incoherent vs. Coherent Resonances

The FFSC model can only predict incoherent resonances as the tracked particles cannot
establish phase coherence. For the considered SIS100 tune quadrant this is sufficient: coherent
resonance phenomena appear to be irrelevant in the search for resonance-free areas, as the
PIC simulations in [10, Fig. 7a] demonstrate. In the following, we give a brief overview why
this approach should suffice for typical situations in most space charge limited synchrotrons.

It is well known that space charge modifies the betatron resonance conditions Eq. as
recently discussed e.g. in [11] and references therein. The particles experience a defocusing
effect of the transverse space charge forces which imprints as an additional detuning term
AQ;ES; in this incoherent resonance condition. Furthermore, the space charge force leads to
inter-particle communication and the particle distribution becomes sensitive to the excitation
of coherent modes. The coherent resonance condition of the corresponding bunch mode
tunes involves intensity dependent %, factors [12], e.g. for a vertical nth order coherent
resonance as

n(Qy—%6n

with the rms-equivalent Kapchinskij-Vladimirskij (KV) tune shift AQJIf V13,

AQV|)=m 4.1)

KSCR2
_40'y(Ux +0y)Qy0
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where K€ is the space charge perveance, R the effective synchrotron radius, o, y the average
rms beam sizes in the transverse plane and Qo the bare tune.

The structure resonance condition of integral m = r S (where r € Z) for external driving
terms translates to internally driven parametric resonance in the presence of space charge.
They can have a severe impact on beam quality when a pumped instability occurs. For the
pure alternate gradient focusing (without space charge) this parametric resonance mechanism
is known from the single-particle 180° or Mathieu instability. For finite space charge also lower
phase advance than 180° per cell can lead to parametric resonance, specifically when coherent
beam modes become unstable. An important feature of the parametric resonance condition is
that this instability occurs twice as dense in tune space compared to the regular resonances in
Egs. and (4.1), namely at half-integer harmonics m — %. While in parametric resonance
research this insight goes as far back as to the 19th century (cf. e.g. Ref. [14]), the occurrence of
the m/2 condition in intense beam dynamics is known at least since Ref. [15].



Recently, Ref. [16] argued that the 2D resonance diagram should be constructed entirely
based on parametric coherent resonances including the nonlinear orders, which would mean
twice as many red lines in Fig. based on the half-integer harmonic condition % = rS.
Fortunately, for Gaussian bunch distributions in alternate gradient focusing, parametric
coherent resonance occurs only for the second-order n = 2 case (also called the envelope
instability). As noted for 1D in Ref. [17] and for 2D (and bunched beam) in Ref. [11], nonlinear
orders n = 3 are Landau damped. Therefore, higher-order parametric coherent resonances
seem to be generally absent for realistic beam conditions.

For SIS100 with S = 6, the nearest n = 2 parametric coherent resonance stop-bands are
located close to (above) Qy,, = 18 and Qy,, = 19.5, and thus far away from the design tune
quadrant 18.5 < Qy,y, < 19 for fast extraction of heavy-ion beams. Even when searching for
loss-free working points close to such an envelope instability stop-band, the results of Ref. [11]
show that the incoherent 4th order stop-band overlaps and entirely embraces the coherent
one — both on the lower end (halo tune region) and the higher end (outer core tune region).
The bunched beam FFSC predictions are found to correctly identify the resonance-free tune
space.

Also in the absence of parametric coherent resonance (e.g. due to Landau damping), struc-
ture resonances at integer harmonics m = r S can be harmful: the incoherent resonance
mechanism can generally lead to halo formation and eventual beam loss. Driving terms can be
provided externally (e.g. regularly spaced sextupole magnets) or internally (e.g. space charge).
In the latter case, the modulation of the space charge potential along the alternate gradi-
ent focusing provides resonance driving terms for all even-order k,¢ = 0,2,4,... in Eq. (3.1).
Large-amplitude particles meeting this incoherent resonance condition are excited and po-
tentially driven into the machine aperture. The CERN Proton Synchrotron is an example for
space charge limitation by the halo generation through an 8th order structure resonance [18],
demonstrating that even very high orders (which are usually disregarded) can be detrimental.

In summary, these incoherent resonance mechanisms for halo and outer core are caught by
the FFSC model when using realistic lattices. It is very useful to understand that computational
prediction of the location of incoherent space charge driven stop-bands with FFSC are hence
not only valid, but even a viable means to identify the edges of resonance-free areas.

5 Identifying the Incoherent Space Charge Driven Resonances in
SIS100

We turn our attention back to the SIS100 FFSC simulations presented in Fig. Driving
terms for nonlinear resonances are solely provided by the space charge potential, where the
harmonic m is determined by the beam size modulation given by the structure of the lattice.
To stress it once more, only structure resonances with even k, ¢ can therefore appear in the
tune diagram. The predicted beam loss appearing in Fig.[3.1a|close to the third-order structure
resonance Qy —2Qy = —18, which touches the tune quadrant at Q, = 19 and Q, = 18.5, is in
reality induced by the coinciding sixth-order structure resonance

2Q,-4Q,=-36=-6-S . (5.1)



The next higher-order structure resonances in Fig. are the decapolar ones: the normal
one above the coupling line, satisfying 3Q, —2Q,, = 18, shows nearby weak rms emittance
exchange as well as minimal loss on the 1% level in the FFSC simulations. Again, the actual
reason for the observed dynamics is the space charge driven 10th order structure resonance

6Q:-4Q,=36=6-S . (5.2)

Its effect of = 1% beam loss is already too weak to appear on the beam loss scale shown in
Fig.

Figure[5.1|shows the same beam loss results with a smaller scale of up to 5% beam loss, with
the two observed space charge driven structure resonances indicated in red. Further very low
losses are visible here along the 14th order resonance lines. However, all these high-order
resonances with 1% beam loss and less play no role in realistic scenarios including the magnet
imperfection driven resonances — compare e.g. to FFSC simulations with the SIS100 field
error model as presented in [10, Fig. 7a], where the usual externally driven resonances simply
overshadow the 10th order space space charge driven resonances given the SIS100 design
beam parameters.
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Figure 5.1: Same as Fig. with structure resonances indicated.

6 Conclusion

All in all, from the optics design point of view, one should avoid tune quadrants with structure
resonances to push the space charge limit in synchrotrons with an accumulation plateau. At
the same time, it is not necessary to consider half-integer harmonics for structure resonances
due to the parametric coherent resonances — one can resort to the usual incoherent resonance
diagrams to at least 6th order. The incoherent stopbands will embrace and include the
coherent stopbands as long as the space charge induced tune spread remains unmodified



(which can happen e.g. due to nonlinear electron lenses). The lesson learned is that it is
sufficient to search for incoherent resonance phenomena with fixed frozen space charge
models in order to correctly identify resonance-free areas.
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