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1 OUTLINE

In previous studies uncontrolled beam losses during slow extraction from SIS-100
were investigated and estimate by particle tracking simulations. The terminus
“previous” in this context refers to work done until and presented at the “Slow
Extraction Workshop” which took place in Darmstadt on June, 1-3, 2016. The
loss source in these simulations were magnet imperfections added to the unper-
turbed lattice. Besides estimating the particle losses also optimising the lattice
settings in order to minimise particle losses was a major aim of the simulation
studies. At that stage only magnet imperfections obtained for highest rigidity
were applied because they are the strongest and, hence, the most challenging mag-
net imperfections. Assuming U28+ beams, the highest rigidity (Bρ)max = 100 Tm
corresponds to the beam energy E = 2.7 GeV/u.

The subject of this report is the test for how robust the results obtained in
previous studies are against uncertainties in the lattice settings and functions. It
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Table 1: Lattice variables of SIS-100 required for slow extraction.

Working point Qx, Qy 17.31, 17.45
Horizontal unnormalised chromaticty ξx, see Equation (4) −1
Height of the CO bump at longitudinal ESS position xbu(sESS) −6 mm
Phase space angle of separatrix at horizontal ESS position x

′

(xESS) 1.46 mrad

starts with magnet errors for highest rigidity. In the second step, also magnet er-
rors for medium rigidity will be considered. High intensity effects are not subject
of any study presented here.

2 PREVIOUS WORK

2.1 Settings of unperturbed lattice

Initial settings for the unperturbed lattice were provided by D. Ondreka for the
working point Qx = 17.31, Qy = 17.8. In order to avoid crossing of resonances by
the the space charge tune footprint in case of high current operation the use of a
vertical tune < 17.5 was suggested by V. Kornilov. For that reason, the working
point Qx = 17.31, Qy = 17.45 is used in previous and present studies.

The settings of the unperturbed lattice are the settings of the strengths of
quadrupole magnets, sextupoles magnets, octupole corrector magnets, and closed
orbit correctors near the electro-static septum (ESS). They are chosen in order
to set the working point (Qx, Qy), the horizontal chromaticity ξx, the height
of a closed orbit bump at the longitudinal position of the electro-static septum
xbu(sESS), size and orientation of the stable area in horizontal phase space, to
ensure that the latter is triangular, and to minimise beta beating generated by
normal-conducting quadrupoles in cell 52 which are longer than the supercon-
ducting quadrupoles in all other cells and, therefore, break the six-fold symmetry
of SIS-100. The target values of the lattice variables are presented in Table 1.

The magnet strengths which define the lattice variables introduced above are
shown in Table 2. The definitions of the magnets strengths are given into the
following.

• The working point is defined by the focusing strengths k1 of the quadrupoles.
There are two normal-conducting quadrupoles in cell 52 with length Llong =
1.76 m whereas the quadrupoles in all other cells are superconducting have
length Lshort = 1.3 m which slightly breaks symmetry and results in beta
beating. To minimise that, focusing strengths of the longer quadrupoles
are set in a way that integrated focusing strengths are

(k1,fL)long = 1.05 · (k1,fL)short (1)

(k1,dL)long = 1.033 · (k1,dL)short, (2)

where indices f, d refer to focusing and defocusing, respectively.

• Strengths of resonance sextupoles define size and orientation of the trian-
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Table 2: Strengths of magnets for slow extraction with the unperturbed lattice.
Some values deviate from those defined by D. Ondreka because the vertical tune
Qy = 17.8 was used whereas Qy = 17.45 is used for this study. Only values which
are not zero are mentioned.

defocusing short quadrupoles: k1 = −0.2017356388 m−2

focusing short quadrupoles: k1 = 0.2015274258 m−2

defocusing long quadrupole: k1 = −0.1539265849 m−2

focusing long quadrupole: k1 = 0.1562982592 m−2

resonance sextupoles, amplitude: (k2L)a = 0.76 m−2

resonance sextupoles, phase: φ0 = 152.79997855650723 deg
“horizontal” chromaticity sextupoles: (k2L)c = −0.4742956583 m−2

steerer S4EKH1: ∆x
′

= −0.000324909043 rad
steerer S51KH1: ∆x

′

= −0.0004466392716 rad
steerer S53KH1: ∆x

′

= −0.000638492101 rad
octupoles cell 4: k3L = 4.9 m−3

gular stable phase space area and are defined by

(k2L)n = (k2L)a sin

(

2πh
n− 1

nperiods
+ φ0

)

, (3)

where h = 2 is some kind of harmonic number, (k2L)a is the amplitude of
the sine or just the “sextupole amplitude”, and φ0 is the “sextupole phase”.
nperiods = 6 is the number of periods of SIS-100 and n is the number a
sextupole and of the period it is contained. There is only a single resonance
sextupole per period.

• The horizontal unnormalised chromaticity ξx defined by

∆Qx = ξxδ (4)

is reduced to
ξx = −1 (5)

by means of the sextupoles in cells 6, 8, A, and C of each period. These
sextupoles have the same strength.

• In order to achieve a clean, triangular stable phase space area it turned out
to be necessary to power the octupoles in cell 4 of each period.

• Applying the settings given in Equations (1) and Table 2 the separatrix at
electro-static septum position is

x
′

(xESS) = 1.46 mrad (6)

which is equal to the pitch angle of the electro-static septum blade.
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2.2 Magnet imperfections

In the studies this report is based on linear and non-linear imperfections in align-
ment and field of dipole and quadrupole magnets are applied.

The linear magnet imperfections are entirely random and defined according
to Gaussian distributions truncated at 2σ. For this study applied:

• transverse shifts ∆x,∆y of quadrupoles leading to closed orbit distortion
with

σ∆x = σ∆y = 1 mm. (7)

• rotations around z axis (tilt) ∆ψ of the dipoles with

σ∆ψ = 4.04 mrad (8)

leading mainly to distortion of the vertical closed orbit. σ∆ψ arises from the
assumption that left and right sides of the dipoles are shifted independently
according to Gaussian with σ∆y = 1 mm, and a full magnet width w =
0.35 m. σ∆ψ follows from the double integral

σ2
∆ψ =

∞
∫

−∞

d(∆y1) g(∆y1)

∞
∫

−∞

d(∆y2) g(∆y2)∆ψ
2(∆y1,∆y2) (9)

with

∆ψ(∆y1,∆y2) =
∆y1 −∆y2

w
(10)

and

g(z) =
1√
2πσz

e
−

z
2

2σ2
z . (11)

• Deviations in the focusing strengths of the quadrupoles k1L with

σk1L
|k1L|

= 6.0 · 10−4 (6 units) (12)

resulting in beta beating.

• Deviations in the deflection angle of the main bending magnets αb with

σ∆αb

αb
= 4.0 · 10−3 (13)

resulting in the deformation of the horizontal closed orbit.

It turned out that the closed orbit distortion generates an additional contribu-
tion to the beta beating because it imposes random quadrupole strengths in the
sextupoles by feed down.

The non-linear imperfections are magnetic field imperfections and lead to
resonance excitation and decrease of dynamic aperture. They are introduced by
the representation of the magnetic field as series

By + iBx = Bρ
∞
∑

n=0

(kn + ijn)
(x+ iy)

n!
(14)
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Table 3: Strengths of magnets for slow extraction with systematic non-linear
magnet imperfections for a U28+ beam at E = 2.7 GeV/u.

defocusing short quadrupoles: k1 = −0.2018027483 m−2

focusing short quadrupoles: k1 = 0.2016372255 m−2

defocusing long quadrupole: k1 = −0.1490588482 m−2

focusing long quadrupole: k1 = 0.148936587 m−2

resonance sextupoles, amplitude: (k2L)a = 0.45 m−2

resonance sextupoles, phase: φ0 = 167.799976890095 deg
“horizontal” chromaticity sextupoles: (k2L)c = −0.6271758065 m−2

steerer S4EKH1: ∆x
′

= −0.0003428661584 rad
steerer S51KH1: ∆x

′

= −0.0003212843055 rad
steerer S53KH1: ∆x

′

= −0.0005074467319 rad
octupoles cell 4: k3L = 0

with the normal and skew multipole coefficients of order n

kn =
1

Bρ

∂nBy

∂xn
and jn =

1

Bρ

∂nBx

∂xn
. (15)

Separate multipole coefficients are applied to the entrance, centre, and exit re-
gions of dipoles and quadrupoles. Each multipole coefficient consists of system-
atic contribution due to magnet design and random component which arises from
random deviations of magnet from design,

(knL, jnL) = (knL, jnL)syst + (knL, jnL)rand, (16)

where random contributions chosen according to Gaussian distribution truncated
at 2σ.

For the quadrupole field imperfections multipoles from simulations up to order
15 in the magnet centres and up to order 20 in the magnet ends are used. The
rms random components of normal and skew multipole coefficients are 30 % of
corresponding systematic normal coefficient, i.e.

σknL = σjnL = 0.3 · |(knL)syst|. (17)

The systematic multipole coefficients used for describing the imperfections
of the dipole fields are obtained from measurements of fields of 2nd FoS dipole,
where the strongest imperfections are those for highest rigidity. The rms random
components are chosen according to table received from magnet department.

2.3 Beam loss simulations with magnet imperfections: con-

ditions, results, and optimisation

The previous simulations were done for conditions of maximum rigidity and
beam energy in order to apply the strongest non-linear field errors. That means
Bρ = 100 Tm which corresponds to the U28+ ion beam energy E = 2.7 GeV/u. It
turned out that the insertion of magnet imperfections changes the working point,
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Figure 1: Relative particle loss as function of sample of random errors at the
electro-static septum (graph above) and in the ring (graph below) done for the
Slow Extraction Workshop (previous) and for this study (repeated). The beam
energy is E = 2.7 GeV/u.

the horizontal chromaticity, the height of the closed orbit bump at the electro-
static septum position, as well as size and orientation of the triangular stable
phase space area. To restore working point, horizontal chromaticity, and CO
bump height the matching routine is applied for each sample of random errors.
New settings for the resonance sextupoles in Equation (3) which define size and
orientation of the stable phase space area were found within trial-and-error pro-
cedure using single particle tracking. The amplitude of the sextupole strengths,
(k2L)a in Equation (3) is chosen to be the same for all samples of random er-
rors. Contrary, the phase φ0 in Equation (3) is determined for each sample of
random errors individually. That is necessary because φ0 strongly influences the
phase space angle of the separatrix at the position of the electro-static septum,
x

′

(xESS), and, hence, the amount of particles lost at the septum. There are ma-
jor changes of the magnet settings necessary due to the application of magnet
imperfections which one can see by comparing Tables 2 and 3. The changes are

• the need for stronger chromaticity correctors because the field of the dipoles
has a strong sextupole component. The sextupole systematic coefficients
are

entrance: (k2L)syst = 0.30 · 10−1 m−1 (18)

body: (k2L)syst = 0.14 · 10−1 m−1 (19)

exit: (k2L)syst = 0.36 · 10−1 m−1, (20)
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see 2nd last row in Table 6. That results in the increased horizontal natural
chromaticity

ξx,nat = −26.7, (21)

whereas the horizontal natural chromaticity of the unperturbed lattice is

ξx,nat = −20.2. (22)

For that reason stronger sextupoles for chromaticity correction are neces-
sary, compare Tables 2 and 3. The non-linear magnet errors as well as the
stronger chromaticity sextupoles result in a reduced horizontal stable phase
space area.

• weaker resonance sextupoles to restore the size of the triangular horizontal
phase space area and, so, to compensate the influence of the stronger chro-
maticity sextupoles. If keeping the resonance sextupoles as strong as chosen
without magnet errors the stable phase space area would strongly decreased
leading to a larger distance between beam and electro-static septum and
increased spiral step which results in fast laving of particles during a turn
between two passages of the electro-static septum and, hence, to beam loss
anywhere in the ring except at the septum.

• The long, normal-conducting quadrupoles in cell 52 have the same inte-
grated focusing strength as the short, superconducting.

• Octupoles are no longer necessary and are switched off.

Finally, 10000 test particles were tracked for 15000 turns in each simulation.
To verify the results, some simulations were repeated with the particle number
reduced to 5000 in order to make them comparable to simulations for investigating
the robustness of the beam losses obtained. Testing the robustness requires many
simulations so that computing time becomes a topic to care on resulting in a
reduced test particle number. The simulations resulted in

• an average particle loss at electro-static septum: Ploss,ESS = 2.6 %.

• an average particle loss anywhere in the ring except at electro-static septum:
Ploss,ring = 0.4 %.

The particle losses found for 10000 and 5000 test particles are similar, see Figure
1.

3 TEST FOR ROBUSTNESS OF OBTAINED

PARTICLE LOSSES

3.1 General procedure

The particle losses found in the study for the Slow Extraction Workshop are
low. They could be achieved by “perfect matching”, i.e. precisely matching
the magnet settings with knowing and regarding systematic and random magnet
imperfections which will not be possible in a real machine. Hence, a test of
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Figure 2: Relative particle loss as function of sample of random errors at the
electro-static septum (graph above) and in the ring (graph below) found after
matching with all errors and matching only with systematic errors and applying
all errors afterwards. The beam energy is E = 2.7 GeV/u.

the sensitivity of these beam losses against small lattice changes is started to be
performed to estimate robustness of the beam losses.

The test procedure consists of the following step:

1. Define reference lattice and match magnet settings in order to obtain the
required machine variables, i.e. working point, horizontal chromaticity, etc.

2. Determine the beam loss with matched reference lattice.

3. Insert perturbations.

4. Determine the beam loss with the perturbed lattice while keeping the mag-
net settings found for the reference lattice. Compare the beam loss to
that found with the reference lattice and to that found with the “perfectly
matched” lattice, i.e. which includes and and had been matched with all
magnet imperfections.

3.2 Beam Energy E = 2.7 GeV/u

In the first step the robustness of particle losses for the maximum energy of a
U28+ beam, = 2.7 GeV/u, is investigated because that scenario was considered
in the previous beam loss simulations because of the strongest non-linear magnet
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imperfections, where the large sextupole error in particular turned out to result
in a strongly increased natural horizontal chromaticity, see Equations (21) and
(22) or Figure 5. Due to the strong sextupole error strongly modified magnet
settings are necessary to enable slow extraction at all. Therefore, the lattice with
magnet imperfections differs that strongly from the unperturbed lattice that the
latter is no longer a proper choice for the reference lattice. On the other hand,
the random variations of the imperfections between the magnets are basically
unknown, whereas it should be possible to determine the systematic errors rather
precisely. Hence, the lattice only with systematic magnet imperfections is used
as the reference lattice and the random variations of the non-linear errors as well
all linear errors are considered as small perturbations.

Matching the magnet settings to the reference lattice, i.e. the lattice with
systematic errors, particle tracking with the reference lattice yielded an averaged
beam loss

• at electro-static septum: Ploss,ESS = 2.6 %

• anywhere in the ring except at electro-static septum:
Ploss,ring = 0.15 %.

With lattice matched with systematic errors and inserting systematic and random
errors afterwards, the averaged beam losses

• at electro-static septum: Ploss,ESS = 2.8 %

• anywhere in the ring except at electro-static septum:
Ploss,ring = 0.46 %, are a little greater than that obtained after matching
with random errors included.

were obtained. The beam losses as function of the samples of random magnet
errors and initial test particle coordinates are shown in Figure 2.

3.3 Beam Energy E = 1.5 GeV/u

At the energy E = 1.5 GeV/u for a U28+ beam corresponding to Bρ = 62 Tm
the use of magnet settings similar to the original presented in Table 2 turned out
to be possible again. The reason is that the systematic sextupole errors in the
dipoles are much less than those at maximum rigidity,

entrance: (k2L)syst = 0.14 · 10−1 m−1 (23)

body: (k2L)syst = −0.86 · 10−3 m−1 (24)

exit: (k2L)syst = 0.15 · 10−1 m−1, (25)

see 6th row in Table 6. Hence, the horizontal stable phase space area remains
sufficiently large for providing efficient slow extraction if resonance sextupoles of
strength close to original value (k2L)a = 0.76 m−1 are applied. The corresponding
magnet settings are presented in Table 4. Remarkable is that no octupole need
to be switched on to generate a sufficiently triangular stable area in horizontal
phase space.

Matching the reference lattice and using it in the beam loss simulations, the
relative beam losses
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Table 4: Strengths of magnets for slow extraction with systematic non-linear
magnet imperfections for a U28+ beam at E = 1.5 GeV/u. The amplitude of the
resonance sextupoles is (k2L)a = 0.76 m−2.

defocusing short quadrupoles: k1 = −0.2017356388 m−2

focusing short quadrupoles: k1 = 0.2015274258 m−2

defocusing long quadrupole: k1 = −0.1539265849 m−2

focusing long quadrupole: k1 = 0.1562982592 m−2

resonance sextupoles, amplitude: (k2L)a = 0.76 m−2

resonance sextupoles, phase: φ0 = 144.67495498907539 deg
“horizontal” chromaticity sextupoles: (k2L)c = −0.5324604356 m−2

steerer S4EKH1: ∆x
′

= −0.000324909043 rad
steerer S51KH1: ∆x

′

= −0.0004466392716 rad
steerer S53KH1: ∆x

′

= −0.000638492101 rad
octupoles cell 4: k3L = 0

• at electro-static septum Ploss,ESS = 5.0 %

• and anywhere in the ring except at the electro-static septum
Ploss,ring = 0.66 %

are obtained. The increase of beam loss at the electro-static septum compared
to that found for highest rigidity perhaps arises from the larger vertical beam
width.

Matching the reference lattice and applying also random magnet errors in the
particle loss simulations yields

• Ploss,ESS = 5.0 % at the electro-static septum and

• Ploss,ring = 0.31 % at all other positions in the ring.

Matching the lattice with all errors and using them in the beam loss simula-
tions results in average particle losses

• Ploss,ESS = 4.9 % at the electro-static septum and

• Ploss,ring = 0.35 % at all other positions in the ring.

The relative particle losses for the single samples of random errors are shown
in Figure 3. The particle losses are obtained to be very similar.

On the other hand, the algorithm for finding φ0 turned out to work not always
work properly so that the phase φ0 found for the samples of random errors are
not entirely reliable. The reason is that with the magnet errors for medium beam
energy the triangular stable phase space area became large enough to almost
reach the electro-static septum position so that the determination of x

′

(xESS)
according to the actual φ0 was not unique for the algorithm. Therefore, it seems
to be recommendable to choose the resonance sextupoles a little stronger. For
that reason resonance sextupole strengths according to

(k2L)a = 0.78 m−2 (26)
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Figure 3: Relative particle loss as function of sample of random errors at the
electro-static septum (graph above) and in the ring (graph below) found after
matching with all errors and matching only with systematic errors and applying
all errors afterwards. The settings applied are those shown in Table 4.
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Table 5: Strengths of magnets for slow extraction with systematic non-linear
magnet imperfections for a U28+ beam at E = 1.5 GeV/u. The amplitude of the
resonance sextupoles is slightly increased to (k2L)a = 0.78 m−2.

defocusing short quadrupoles: k1 = −0.2017229169 m−2

focusing short quadrupoles: k1 = 0.2015195759 m−2

defocusing long quadrupole: k1 = −0.1539168779 m−2

focusing long quadrupole: k1 = 0.1562921711 m−2

resonance sextupoles, amplitude: (k2L)a = 0.78 m−2

resonance sextupoles, phase: φ0 = 145.29997893134714 deg
“horizontal” chromaticity sextupoles: (k2L)c = −0.5324426134 m−2

steerer S4EKH1: ∆x
′

= −0.000324909043 rad
steerer S51KH1: ∆x

′

= −0.0004466392716 rad
steerer S53KH1: ∆x

′

= −0.000638492101 rad
octupoles cell 4: k3L = 0

in the next step, where all other parameters are only changed in order to set the
required lattice variables. The magnet strengths set are presented in Table 5.
Repeating the simulations for the scenarios as before yields the averaged losses

• Ploss,ESS = 4.5 % at the electro-static septum and

• Ploss,ring = 0.14 % at all positions except the electro-static septum,

when using the reference lattice for matching and in the beam loss simulations,

• Ploss,ESS = 4.7 % at the electro-static septum and

• Ploss,ring = 0.35 % at all positions except the electro-static septum,

after matching the reference lattice and using systematic and random errors in
the beam loss simulations, and

• Ploss,ESS = 5.1 % at the electro-static septum and

• Ploss,ring = 0.31 % at all positions except the electro-static septum,

if the lattice is matched with systematic and random errors. The relative particle
losses for the single samples of random errors are shown in Figure 4. Regarding
systematic and random errors during matching results in particle losses which are
slightly higher than those when matching occurred only with systematic errors
and all errors were applied in the beam loss simulations. That point is counter-
intuitive and should be clarified.

The beam losses obtained with the slightly increased sextupole strengths are
in general a little less than those obtained with (k2L)a = 0.76 m−2. Furthermore,
the algorithm to find φ0 for each sample of random errors works well because tri-
angular stable phase space area is sufficiently far enough from horizontal position
of electro-static septum so that phase space angle of separatrix x

′

(xESS) can be
clearly determined.
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Figure 4: Relative particle loss as function of sample of random errors at the
electro-static septum (graph above) and in the ring (graph below) found after
matching with all errors and matching only with systematic errors and applying
all errors afterwards. The settings applied are those shown in Table 5.

4 NECESSITY FOR USE OF OCTUPOLES

Part of the original settings generated for the unperturbed lattice was the use of
octupole correctors which turned out to be necessary for the formation of stable
phase space area of clean triangular shape. Instead, when inserting non-linear
magnet errors the use of octupole correctors was not necessary anymore. The sim-
plest explanation is that the sextupole errors change the horizontal chromaticity
in a way that the influence of the octupoles to correct for some higher order
chromatic effects is no longer necessary. From that arises the question whether
is that assumption reasonable? To find a comprehensive answer to this question
would require the general determination of the higher order chromatic effects
which would go beyond the present study. Instead, some single particle tracking
simulation are performed for an example to find some threshold for the necessary
strength of the sextupole errors and, so, to check whether there is a threshold
and to proof the phenomenon to be not a numerical artefact. The latter should
be assumed if a triangular stable phase space area could be found for finite but
arbitrarily small sextupole errors.

In the example the lattice contains only systematic sextupole errors in the
dipoles, where those which correspond to E = 1.5 GeV/u or Bρ = 62 Tm are
applied, see 6th row of Table 6. To find a lower limit, they are consecutively
multiplied with a factor κ ∈ [0, 1]. The frontier between formation of a triangular
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Table 6: Systematic sextupole error coefficients k2L in entrance, centre, and exit
region of the magnetic field of the main dipoles as function of the rigidity. The
beam energies correspond to those of a U28+ beam. The total sextupole strengths
in the last column are the sum of those in the three previous columns.

excitation rigidity beam energy entrance centre exit total
current/[A] [Tm] [GeV/u] k2L/[m

−2] k2L/[m
−2] k2L/[m

−2] k2L/[m
−2]

500 3.89 0.010 0.0103 −0.0275 0.00977 −0.0074
1000 7.76 0.039 0.0126 −7.05 · 10−3 0.0128 0.018
1500 11.64 0.086 0.0135 −2.14 · 10−3 0.0134 0.025
2000 15.51 0.149 0.0138 −3.0 · 10−4 0.0137 0.027
4000 31.02 0.505 0.0140 3.38 · 10−4 0.0139 0.028
8000 61.99 1.45 0.0144 −8.55 · 10−4 0.0147 0.028
10000 77.40 1.95 0.0163 −3.64 · 10−3 0.0173 0.030
12000 92.19 2.45 0.0228 −3.75 · 10−3 0.0261 0.045
13200 100.18 2.72 0.0303 0.0139 0.0361 0.080
13500 102.06 2.79 0.0328 0.0201 0.0393 0.092

and a non-triangular stable phase space area is found for

κ ∈ [0.5, 0.6], (27)

see red and green curves in Figure 6. One can see that red stable phase space
area as well as that determined for κ = 0 has round corners and no particle leaves
the triangle. On the other hand, the green stable phase space area as well as that
found for κ = 1 has sharp corners and leaving particles are visible which denote
the separatrices one of which is directed towards the electro-static septum.
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Bρ / (Tm)

-30

-25

-20

-15

ξ x

with systemtatic errors
without errors

Figure 5: Unnormalised horizontal natural chromaticity of the SIS-100 lattice
with systematic magnet imperfections as a function of the rigidity, which corre-
sponds to the excitation current, see Table 6.

5 Summary

Starting from settings for the unperturbed SIS-100 lattice provided by D. On-
dreka, particle losses during slow extraction had been estimated by particle track-
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Figure 6: Horizontal stable phase space area determined by single particle track-
ing for a lattice only with systematic sextupole errors in the dipoles, where
(k2L)orig denotes the sextupole strengths for Bρ = 62 Tm in the 6th row of
Table 6.

ing after inserting magnet errors. In the first step, non-linear magnet errors for
the highest rigidity was included because they are the strongest and, hence, define
the most challenging case. Later, also the influence of non-linear errors for an
intermediate rigidity was investigated. In particular the inclusion of the errors for
highest rigidity resulted in large beam losses and made comprehensive changes of
the settings necessary in order to minimise particle losses. In doing so, losses of
about 5 % at the electro-static septum and of about 0.5 % at all other positions
could be achieved.

The low particle losses could be achieved by perfectly matching the lattice
with all magnet errors considered. The aim of the study presented in this re-
port now is to check the robustness of the small particle losses. The robustness
is estimated by determining particle losses with a matched reference lattice and
with the lattice with magnet errors added and using the settings for the reference
lattice. It turned out, that for highest rigidity the unperturbed lattice can not be
used as reference lattice because the necessary changes of the lattice settings due
the strong magnet imperfections are that large that adding the magnet imper-
fections would make extraction basically impossible. Therefore, the lattice with
systematic errors is used as reference lattice and only the random error contribu-
tions are added. The particle losses found are not far above those found with the
perfectly matched lattice. That suggests that rather good results could be found
if the lattice is optimised with regarding only systematic magnet imperfections.

There are open points which have to be clarified:

• The particle losses of the simulations for conditions at E = 1.5 GeV/u at the
electro-static septum are found to be in average slightly higher if all magnet
errors were included during matching than those found after matching only
the reference lattice with systematic errors but applying all errors in the
particle loss simulations. That contradicts with intuition because regarding
for all magnet errors should yield a better adaptation of the separatrix to
the pitch angle of the electro-static and, hence, lower particle loss there.

• The particle losses at the electro-static septum found for intermediate en-
ergy, E = 1.5 GeV/u, are higher than those found for the maximum energy
E = 2.7 GeV/u. A possible reason could be that for lower energy the
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vertical beam width is greater which increases beam loss. First results of
simulations with vanishing vertical beam width, i.e. ǫy,beam = 0, contra-
dict this assumption because the beam losses found are not less than those
found with finite vertical beam width derived from the beam emittance at
injection energy and the adiabatic damping according tot the extraction
energy.

For these points the present report represents a preliminary status and will be
extended when there will be new results.
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