SIS-100 beam dynamics

Outline:

- beam and intensity parameters
- beam loss studies (-> talk by G. Franchetti)
- beam stability studies: coherent beam instabilities, impedances and cures
- rf manipulations with intense bunches

SIS-100 machine cycle

beam dynamics issues

Studies concentrate on:

- a) accumulation phase
- b) pre-compression schemes
- c) fast bunch compression

SIS-100 specific beam dynamics issues:

- o Intensities at the 'space charge limit'
- o 'Thick beams'
- o High beam quality (weak or lost Landau damping)
- o Long accumulation time (1 s)
- o Strong bunch compression ('extreme' space charge)

SIS-18/100 beam parameter

FAIR beam parameter booklet, April 2007

space charge tune shift:					
$\Delta Q_{y}^{sc} = -$	NZ^2	$g_{_f}$	2		
	$\overline{A\beta_0^2\gamma_0^3}\pi$	τB_{f}	$\left(\mathcal{E}_{y} + \sqrt{\mathcal{E}_{x}\mathcal{E}_{y}} \right)$		
<u>bunchiı</u>	ng facto	<u>or:</u>	$B_{f} = \frac{I_{dc}}{I_{peak}}$		

SIS-100 transverse acceptance:

200/50 mm rad -> aperture filling factors: in x: 1/2, in y: 2/3

SIS-100 beam power: max. 50 kW 10 % distributed loss: 5 W/m

	SIS-18	SIS-100	
lon	U ²⁸⁺	U ²⁸⁺	
inj./ext. energy	11.4/200 MeV/u	0.2/1.5 GeV/u	
# bunches (inj/ext)	2/2	8/1	
# ions (ext)	1.5E11/cycle	5E11/cycle	
beam loss / cycle	40 %	10 %	
ΔQ_{sc} (inj/ext)	-0.5/-0.06	-0.3/-0.7	
ε _{x,y} (4σ, physical, inj)	150/50 mm rad	50/20 mm mrad	
Dilution factor (transverse)	2.5	2.5	
Δ p/p (2 σ , dc, inj)	1E-3	4E-4	
Dilution factor	2	2	
Bunch length (ext.)		<mark>60 ns</mark> (10 m)	

Beam loss budget:

Residual activation induced by heavy ions and tolerable beam loss level

Hands-on maintenance criterium:
1 W/m for 1 GeV proton beams.
5 W/m for 1 GeV/u uranium beam.
58 W/m for 200 MeV/u uranium beam.

Beam loss budget in SIS-100:

desorption (other talks), damage, quenching, activation

I. Strasik, E. Mustafin et al., **RESIDUAL ACTIVITY INDUCED BY HIGH-ENERGY** HEAVY IONS IN STAINLESS STEEL AND COPPER, EPAC 2008

- Isotope distribution is the same for p and U beams.
- Due to Z² dependence of dE/dx heavy ions experience less nuclear interactions than protons
 -> less activation.

• Tolerable beam loss for heavy ions is higher than for proton beams.

Beam loss studies (-> G. Franchetti's talk): Particle tracking including space charge and resonances

Simulation scan of the SIS-100 dynamic aperture (details in G. Franchetti's talk) DA /o

Long-term (up to 1 s) 3D particle tracking studies with 'frozen' space charge indicate a space charge limit at 3x10¹¹ U²⁸⁺ (design 5x10¹¹).

G. Franchetti, I. Hofmann, F. Zimmermann, W. Fischer Incoherent Effects of Space Charge and Electron Cloud Proc. of 11th European Particle Accelerator Conference, 2008

Particle tracking studies:

- initial Gaussian beam distribution (cutted at 2.5σ)
- bunching factor B_f=0.33
- natural chromaticity
- multipole errors (+ random fluctuations)
- residual closed orbit distortion
- 'frozen' transverse space charge field

Code benchmarking: SIS-18 experiments (S317)

Crossing of a 3-order resonance with space charge in SIS-18: Ar¹⁸⁺ bunch

Measurements vs. simulation: emittance growth, beam loss and bunch length

Beam stability: Transverse SIS-100 impedance studies

Impedance studies:

✓ Thin (0.3 mm) resistive beam pipe:

✓ Ferrite loaded kicker modules:

Estimated impedance spectrum at 200 MeV/u

Specific SIS-100 impedance issues:

- Low frequencies and beam energies
- Image current impedance: $Z_{\perp}^{sc} = -i \frac{Z_0 R}{\beta_0^2 \gamma_0^2} \frac{1}{b^2} \approx -i10 \text{ M}\Omega/\text{m}$

X Electron clouds (from residual gas ionization), distributed collimator system

GSI

Beam stability: SIS-100 thin resistive wall impedance

Lowest coherent betatron frequency: $f_{\min} = (1 - [Q])f_0 \approx 0.5f_0$

Transmission: Structures behind the pipe might contribute to the impedance !

Al-khateeb, Hasse, Boine-F., Daga, Hofmann, Phys. Rev. ST-AB (2007) HELMHOLTZ G S I 8

Beam stability: resistive wall instability in SIS-18

Measured instability growth in a coasting Xe^{48+} beam (N=10¹⁰) at injection energy (11.4 MeV/u)

The **beam pipe in the SIS-18** dipole sections is only 0.3 mm thick (similar to SIS-100).

from the growth rate: $\Re Z_{\perp}^{rw} \approx 0.45 M\Omega / m$ analytic expression: $\Re Z_{\perp}^{rw} \approx 0.15 M\Omega / m$ Analytic theory underestimates the thin wall impedance in SIS-18 by a factor 3.

V. Kornilov (2008)

Stabilization of the coasting beam

coasting beam stability boundary (from dispersion relation)

The coasting beam resistive wall instability can be damped using the available octupoles.

The effect of the octupoles on the DA is presently being studied.

GSI

HELMHOLTZ

GEMEINSCHAFT

V. Kornilov, O. Boine-F., I. Hofmann, PRST-AB 2008

Beam stability: Transverse head-tail instability in SIS-100 caused by the resistive wall impedance

- Sacherer's formula predicts the growth of the head-tail mode m=5 with the rate 70 ms.
- Specific conditions in SIS-100 (not included in the available theory) are space charge and image currents with $\Delta Q_{\rm incoh}^{\rm sc} > \Delta Q_{\rm coh}^{\rm sc} > \nu_s$
- Simulation and experimental studies
 (SIS-18 and CERN PS) are pursued to confirm damping mechanisms with space charge.

Head-tail instability in the CERN PS (E. Metral 2007): Results (mode number) agree with theory although space charge is as strong as in SIS-100.

Experimentally validated cures in the CERN PS: - x-y coupling and octupoles

V. Kornilov, O. Boine-F. Proc. of ICFA-HB 2008, Nashville, USA, 2008.

We presently assume that dc and head-tail instabilities can be damped with the available octupoles. In addition a broadband damper system can be installed.

rf manipulations and bunch stability

Single bunch formation in SIS-100:

SIS-100 specific issues:

 \circ longitudinal space charge and broadband beam loading (MA cavities)

o tight budget for longitudinal emittance dilution (factor 2).

SIS-100 longitudinal beam dynamics studies:

Bunch form distortion and bucket area with space charge and beam loading

HELMHOLTZ

12

GSI

- Effect of rf phase and amplitude modulations and noise
- C Longitudinal coasting and bunched beam stability
- Fast and low dilution pre-compression schemes
- ✓ Bunch rotation with beam loading

bunch stability: space charge and beam loading

barrier rf bucket before pre-compression

Longitudinal space charge impedance:

$$\frac{Z_l^{sc}}{n} = \frac{igZ_0}{2\beta_0\gamma_0^2} \approx i\,200\,\Omega$$

	# cavities	R_s /cavity [k Ω]	Q _s	f_{res}
acceleration	20	3	10	10f ₀
barrier	2	1	0.4	1.5 MHz
compression	16	1	2	1.5 MHz

Matched line density (between barriers , no rf): $\lambda(z) = \lambda_m \exp\left(\alpha_s \lambda + \alpha_r \int_0^z \lambda dz\right)$ with $\alpha_s \propto \frac{Z_l^{sc}}{n} = \alpha_r \propto R_s$ Maximum bunch distortion: $\frac{\Delta \lambda}{\lambda_0} \approx \frac{\alpha_r \lambda_0 z_m}{1 - \alpha_s \lambda_0} \le 0.1$ Tolerable: $\mathbf{R}_s \approx 0.75 \text{ k}\Omega/\text{cavity}$

rf manipulations: fast pre-compression

Non-adiabatic barrier rf phase ramp:

T=100 ms $T_{s0} > 100$ ms (ramp time) ('synchrotron period') Space charge factor: $\Sigma = \frac{C_s}{v_{rms}} > 1$ $c_s \propto \sqrt{\frac{Z_P^{sc}}{n}}$: speed of space charge waves $v_{rms} \propto \frac{\Delta p}{p}$: incoherent rms velocity

Barrier shock compression:

The moving barrier rf pulse launches a shock wave that is reflected from the opposite barrier.

The process is fast and 'dilution-free'.

rf manipulations: final bunch compression

Single bunch formation # cavities $R_c/cavity [k\Omega]$ f_{res} Q, 0.2->1.5 GeV/u compression 16 1 2 1.5 MHz 8 bunches peak current evolution • beam loading shifts the final bunch 1.0 extraction 40 distribution down in momentum. 0.8 compression factor is not affected. 30 with 0.6 0 0 'bunch merging' beam • Solution: initial momentum offset × 20 loading 0.4 or rf phase ramp. 10 0.2 t=0.601232 ms pre-compression 30 0.0 0 _[°] 15 100 200 300 400 0 turns 0 rotation Transverse beam loss/blow-up : 10 10 10⁻³ 5 No indication seen in 3D studies. 5 х Ω 0 d/dp o Experiments in SIS-18 this April. Δp. -5 -5 extraction -10-10 o CERN PS: ΔQ_v ≈-1 reached. 0 -200 - 100100 200 f(dp/p) [arb. units] z [m] HELMHOLTZ GSI GEMEINSCHAFT

Summary

Beam loss due to resonances and space charge (-> G. Franchetti's talk):

- Elaborate particle tracking and experimental studies have been completed.
- Simulation studies indicate a space charge limit close to 3E11 U²⁸⁺.
- o Strategies for intensity increase: flattened bunches, resonance compensation.

Transverse beam stability and impedances:

- o Impedances of ring components have been calculated or simulated (activity still ongoing).
- The thin resistive wall impedance is a main concern for beam stability.
- Transverse space charge causes 'loss of Landau damping'.
- o Octupoles are a potential cure for coasting and head-tail instabilities (DA will be checked).
- For more safety: active broadband damping system

Rf manipulations and longitudinal beam stability:

- Space charge compensates the beam loading effect on the bunch form
- Space charge allows for faster barrier compression.
- Beam loading effect during the final compression has to be compensated.
- For longitudinal bunch stability active dampers are needed (-> rf talk).

GSI

HELMHOLTZ

Collaborations

CERN ABP group (E. Metral, G. Rumolo, F. Zimmermann, F. Schmidt): beam loss, space charge, impedances, coherent instabilities, electron clouds, MAD-X

HELMHOLTZ

17

GSI

CERN RF group (E. Shaposhnikova, H. Damerau): longitudinal bunch stability, rf manipulations, BTF

FNAL accelerator division (A. Burov, V. Lebedev): coherent instabilities with space charge

TU Darmstadt, TEMF (Th. Weiland and co-workers): simulation of impedances

ITEP, Moscow (P. Zenkevich, S. Bolshakov, V. Kapin): nonlinear beam dynamics, MAD-X

Jarmouk University, Jordan (A. Al-khateeb): impedance calculations

(Last collaboration meeting: 18/19 Feb. 2009 at GSI)

Beam loss studies in SIS-18 for SIS-100 (S317 experiment)

Experiments (08/2008) related to the space charge limit for Ar⁺¹⁸: high-intensity working point

<u>G. Franchetti</u>, I. Hofmann, W. Bayer, F. Becker, O. Chorniy, P. Forck, M. Kirk, T.Mohite, C. Omet, A. Parfenova, P. Schütt The S317 experiment on high intensity beam loss and emittance growth, Proc. of ICFA-HB 2008, Nashville, USA, 2008