

Beam Loss Simulations at injection plateau

Giuliano Franchetti MAC 2010 1-2 December 2010

Overview

- SIS100 injection plateau scenario
- Beam Loss Mechanism Mechanism
- Beam Loss Prediction for SIS100
- Improving Beam Loss
- Robustness of the correction scheme
- Next Step: Verification in SIS18
- Conclusion and Final Remarks

SIS100 injection plateau scenario

Problem of control of beam loss for the bunched beams in SIS100 during 1 second

BEAM LOSS MECHANISM

Mechanism of beam loss

Key ingredients

- Space charge tune-spread 1)
- Lattice Resonance 2)
- Longitudinal motion (bunched beam) 3)

Halo amplitude and speed of halo formation has a complex dependence from

- 1) Space charge incoherent tune-shift
- Position of bare tune with respect to the resonance 2)
- Strength of the resonance 3)
- Longitudinal profile 4)

Experimental verification in SIS18

TABLE I.	Typical	parameters	of	SIS18	and	of	the	ion	beam
used.									

.25	Parameter	Value	Units
	Energy per nucleon	11.28	MeV/u
	Ion mass number	40	
2.2	Ion charge state	18	
	rf harmonics	4	
	rf voltage	4	kV
	Total particles per bunch	3.125×10^{8}	
0.15	Gamma transition	5.01	
).15	Rigidity	1.077	Tm
	SIS18 circumference	216.1	m
	Average β_x	~ 8	m
	Average β_y	~10	m
0.1	Revolution time	4.673	μ s
	Eta transition	0.9362	
	Synchrotron tune	$6.915 imes 10^{-3}$	
	Bunching factor	0.3357	
0.05	Rms momentum spread	$1.3 imes 10^{-3}$	
.05	Bunch length 4σ	560	ns
	Maximum $\delta p/p$ in the bucket	$7.4 imes 10^{-3}$	
	Horizontal emittance at 2σ	19	mm mrad
	Vertical emittance at 2σ	14	mm mrad
)	Horizontal peak tune shift	-4×10^{-2}	
	Vertical peak tune shift	$-4.5 imes 10^{-2}$	

GSI ____

1-2/12/2010

Experimental verification in SIS18

G. Franchetti, O. Chorniy, I. Hofmann, W. Bayer, F. Becker, P. Forck, T. Giacomini, M. Kirk, T. Mohite, C. Omet, A. Parfenova, and P. Schuett PRSTAB **13**, 114203 (2010)

Simulations made with MICROMAP library

- Full linear and nonlinear optics; •
- Symplectic tracking; •
- Frozen space for long term tracking: analytic Model for a Gaussian Transverse-Longitudinal beam distribution;
- PIC available, but not used for 10⁵ turns (!) ٠ for avoiding noise effects on beam.

The library has been tested against codes for the self-consistent part

Tested against the SIS18 measurements (benchmarking)

SUMMARY

Experimental evidence show that slow beam loss takes place only when the following 3 elements are simultaneously present

- 1) Space charge tune-spread
- 2) Lattice Resonance
- 3) Longitudinal motion (bunched beam)

MICROMAP predicts beam loss a factor 2 less than real beam loss

BEAM LOSS PREDICTION FOR SIS100

SIS100 Modeling

- Linear Lattice 1)
- All insertions (i.e. each element sizes + all septums, NO Collimators) 2)
- 3) Each magnet has nonlinear field modeled via 3 localized nonlinear kicks of the systematic errors
- Displacement of quadrupoles is modeled by insertion of a dipolar kick in center of 4) quadrupole
- 5) Inclusion of all magnet correctors: steerers and sextupole for chromatic correction and resonance corrector sextupoles (in addition with guadrupoles and octupoles)

Magnet design: CSLD Pavel Akishin, Anna Mierau, Pierre Schnizer, Egbert Fischer 3. June 2010 Magnet multipoles: V.Kapin, P. Schnizer, A. Mierau Kapin, V.; Franchetti, G. ACC-note-2010-004 Lattice: J. Stadlmann, A. Parfenova, S.Sorge

SIS100 magnet nonlinearities

Multipoles in magnets up to order 15: nonlinear kick in Entrance Body Exit

Dipole: Body

EXAMPLE

Quadrupole: Body

ISIS100 Dipole CSLD8b !"Rogovsky I1 1319kA_Cntr_Bpho_Tm_10.17_CO_xy_p0.0_p0.0_mm" !"data hdf/SIS100 Dipole CSLD Harmonics 20100609.h5: !/Dipole/D3/Curved/CSLD8b/Rogovsky Profile/" MDC0 MULTIPOLE -4.8321734468527902E-02 -8.0460622403658862E-11 0 MDC1 MULTIPOLE 1.3222876973075998E-06 -4.4286349322627113E-09 1 MDC2 MULTIPOLE -1.5411882617349000E-02 -2.6132592908204184E-07 2 MDC3 MULTIPOLE -3.7034493848285333E-03 -1.8587012098560845E-05 3 MDC4 MULTIPOLE 4.5506880778861124E+01 2.9261019441204273E-04 4 MDC5 MULTIPOLE -6.2559995183645212E+00 2.3583431753596007E-01 5 MDC6 MULTIPOLE 7.3051033143311797E+04 -1.4162812922709435E+02 6 MDC7 MULTIPOLE -1.4288951062831108E+05 -3.4965239042733432E+04 MDC8 MULTIPOLE 2.2831975374350262E+09 1.0324892588690210E+07 8 o MDC9 MULTIPOLE 1.0564506501167362E+10 2.9113326625993242E+09 MDC10 MULTIPOLE -1.6359949140068581E+14 -7.0591807199292908E+11 10 MDC11 MULTIPOLE -6.9868819985378656E+13 -2.1251269228490359E+14 11 MDC12 MULTIPOLE 2.5207268897163274E+18 3.4255809404212480E+16 12 MDC13 MULTIPOLE 1.6101150642536155E+19 1.1090489334002389E+19 13 MDC14 MULTIPOLE -2.2667622204271218E+23 -9.5935636945850047E+20 14 MDC15 MULTIPOLE -8.9215833271142267E+22 -3.2804988706914617E+23 15

!SIS100_Quadrupole6Turn

!"Quad6TurnsV1_I1_460kA_Cntr_Bpho_Tm_12.23_CO_xy_p0.0_p0.0_mm"							
!"data_hdf/SIS100_Quadrupole6Turn_20100623.h5:							
!/Qua	drupole/Turn	s6/D3/OperaCalc/StaticCalculation/V1/"					
Eqb0	MULTIPOLE	-2.6789881018894428E-14 5.5045898388867806E-14	0				
Eqb1	MULTIPOLE	2.1717022154679769E-01 1.9856320529300420E-12	1				
Eqb2	MULTIPOLE	-9.4521226576819973E-11 1.9401448718616971E-10	2				
Eqb3	MULTIPOLE	3.7858283188846437E-03 1.0501181037334316E-08	3				
Eqb4	MULTIPOLE	7.0414842692841817E-07 -1.4318783375984776E-06	4				
Eqb5	MULTIPOLE	3.0194294633632222E+02 -2.8051263507461471E-04	5				
Eqb6	MULTIPOLE	-7.8478544512944073E-02 1.6019533278747095E-01	6				
Eqb7	MULTIPOLE	-1.8269515944715394E+06 2.5709785026550517E+01	7				
Eqb8	MULTIPOLE	4.7775705574752483E+03 -9.7507153716628163E+03	8				
Eqb9	MULTIPOLE	1.5853417177689340E+11 -1.7429770135777944E+06	9				
Eqb10	MULTIPOLE	-2.5512932132258266E+08 5.2083611876728094E+08	10				
Eqb11	MULTIPOLE	-6.9973814030639240E+15 9.9896489034391388E+10	11				
Eqb12	MULTIPOLE	9.8111951662325020E+12 -2.0032780989903805E+13	12				
Eqb13	MULTIPOLE	1.2725759662788647E+20 -4.1250219682152360E+15	13				
Eqb14	MULTIPOLE	-2.1305597834814832E+17 4.3518970770377338E+17	14				
Eqb15	MULTIPOLE	-8.7801330870650991E+23 9.4854103306132488E+19	15				

SIS100 working point and lattice resonances

Random Errors and COD

In order to predict beam loss we have to consider the effect of random deviation of systematic multipolar components in magnets

We call "seed" one sequence of random errors in SIS100 magnets + COD

Random error: Taken as 30% of the systematic component (Gaussian distribution)

COD: is obtained by adding a thin dipole in the quad of random strength $\delta K_0 = 1.6 \times 10^{-5}$ rad. This value is consistent with a rms COD of 1mm obtained after correcting the closed orbit deformation

Effect of random error and COD

Random errors, DA, and Resonances

Statistical view of the possible resonances

 $[\langle DA\rangle - 3 \text{ st.dev.}(DA)]/\sigma$

Short term DA (1000 turns)

Average DA – 3 standard dev !

Statistics on 30 error seeds of random errors and quadrupoles displacement

NO COD included in these simulations

Simulations: Beam Properties

The distribution is truncated in energy, in each plane, at 2.5 sigma

Beam1: $\varepsilon_{x2\sigma}$ = 35 mm-mrad, $\varepsilon_{y2\sigma}$ = 15 mm-mrad Beam2: $\varepsilon_{x2\sigma}$ = 50 mm-mrad, $\varepsilon_{y2\sigma}$ = 20 mm-mrad

Particle distribution is Gaussian, matched with the lattice and injected 1mm off center

Identification of the "standard error seed"

To select the error standard error seed we use the **Beam2** as a probe

Check over full cycle length

bunch length +/- 90° Bf = 0.35

Simulation extended to 1.57 x10⁵ turns

Including space charge

We investigate here only Beam 1

Does the space charge create a trouble without nonlinearities ?

Resonances excited by the "standard seed"

DA/\sigma

Resonances crossing the space charge tune-spread

> 2 Qy = 37 Qx + 2 Qy = 563 Qx = 56 2 Qx + 2 Qy = 75 4 Qx = 75

Relation between beam survival over full cycle and survival of 1st bunch

Beam loss versus beam intensity

Clear indication that beam intensity is relevant for beam survival but also that magnet nonlinearities are relevant in the beam loss budget

A global view: performances vs. intensity

 $\varepsilon_{x/y,2\sigma} = 35/15 \text{ mm-mrad}$

For the "standard error" seed

Beam loss are strongly affected by space charge: for intensities below 3E11 beam loss are contained within 5%

At maximum beam intensity 5E11 beam loss over the full cycle is 35%

Improvement of all multipolar components improve beam loss to 15%

How do we use the understanding of the mechanism of beam loss to control them?

In TDR2008 it was suggested that Qx + 2Qy = 56 might be responsible of beam loss [also suggested in G.Franchetti et al. PRSTAB 12, 124401 (2009)]

IMPROVING BEAM LOSS

Academic example II

We remove the 3rd order components from dipoles

Does resonance compensation really mitigate periodic crossing diffusion ?

Compensation Strategy: A first approach

Compensate the resonance Qx + 2 Qy = 56without exciting the resonance 3 Qx = 56

Compensation strategy

Cancellation of the driving terms of Qx + 2 Qy = 56 and 3 Qx = 56

at the crossing of the two resonances that we call "cancellation working point"

WPC: Qxc = 18.66, Qyc = 18.66

Analysis of the driving terms

General expression of the driving terms

G. Guignard CERN 78-11 10 November 1978

$$h = \frac{R}{2\pi (2R)^{N/2} |n_x| |n_y|} \sum_j \beta_{xj}^{|n_x|/2} \beta_{yj}^{|n_y|/2} \times e^{i[n_x \phi_{xj} + n_y \phi_{yj} - (n_x Q_x + n_y Q_y - p)s_j/R]} \begin{cases} (-1)^{(|n_y| + 2)/2} K_{N,j} \text{for } n_y \text{ even} \\ (-1)^{(|n_y| - 1)/2} J_{N,j} \text{for } n_y \text{ odd} \end{cases}$$

We define $k_{N,j}$ to be associated to $K_{N,j}$

$$k_{N,j} = \frac{R}{2\pi (2R)^{N/2} |n_x| ||n_y||} \beta_{xj}^{|n_x|/2} \beta_{yj}^{|n_y|/2} \times e^{i[n_x \phi_{xj} + n_y \phi_{yj} - (n_x Q_x + n_y Q_y - p)s_j/R]} \begin{cases} (-1)^{(|n_y| + 2)/2} \text{for } n_y \text{ even} \\ (-1)^{(|n_y| - 1)/2} \text{for } n_y \text{ odd} \end{cases}$$

Correction system normalized driving terms

The normalized resonance driving terms $k_{2,j} = |k_{2,j}|e^{i\theta}$ at the "cancellation point" Qxc = Qyc = 18.66 follow the symmetry of the optics

WPC:	Qxc = 18.667	Qyc = 18.667
Resonance	3 Qx = 56	
Kerr =	-3.53E-03+	+ i5.30E-04
Nele	$ k_{2,j} $	ϑ/(2π)
1	1.02E-02	0.5
535	5.36E-02	1.3963
2494	1.02E-02	1.8333
3028	5.36E-02	2.7297
4987	1.02E-02	3.1667
5513	5.36E-02	4.063
7472	1.02E-02	4.5
7998	5.36E-02	5.3963
9957	1.02E-02	5.8333
10483	5.36E-02	6.7297
12442	1.02E-02	7.1667
12986	5.36E-02	8.063

WPC:	Qxc =18.667	Qxc = 18.667
Resonance (Qx + 2 Qy = 56	
Kerr =	9.63E-03+	· i 3.26E-03
Nele	$ k_{2,j} $	ϑ/(2π)
1	8.93E-02	0
535	5.28E-02	0.89866
2494	8.93E-02	1.3333
3028	5.28E-02	2.232
4987	8.93E-02	2.6667
5513	5.28E-02	3.5653
7472	8.93E-02	4
7998	5.28E-02	4.8987
9957	8.93E-02	5.3333
10483	5.28E-02	6.232

8.93E-02

5.28E-02

12442 12986

6.6667

7.5653

Full scheme of assigning 4 independent strengths

We have created 4 knobs, b_1, b_2, b_3, b_4 assigning to the 12 sextupoles the following values

Nele	Name strength	Name object	value
1	$K_{2,1}^2$	$\operatorname{corr_oct1}$	b_3
535	$K_{2,1}^{1}$	$\operatorname{corr_oct2}$	b_1
2494	$K_{2,2}^{2'}$	$\operatorname{corr_oct3}$	b_3
3028	$K_{2,2}^{1'}$	$\operatorname{corr_oct4}$	b_1
4987	$K^{2'}_{2,3}$	$\operatorname{corr_oct5}$	$-b_3$
5513	$K^{1^{'}}_{2,3}$	$\operatorname{corr_oct6}$	$-b_1$
7472	$K^{2}_{2,4}$	$\operatorname{corr_oct7}$	b_4
7998	$K_{2,4}^{1}$	$\operatorname{corr_oct8}$	b_2
9957	$K_{2,5}^{2}$	$\operatorname{corr_oct9}$	$-b_4$
10483	$K^{1}_{2,5}$	$\operatorname{corr_oct10}$	$-b_2$
12442	$K^{2'}_{2,6}$	$corr_oct11$	b_4
12986	$K^{1}_{2,6}$	$corr_oct12$	b_2

EFFECT on Chromaticity

 $\left|\frac{\partial Q_{x/y}}{\partial(\delta p/p)}\right| < \frac{1}{\pi}\beta_{x,max}D_{x,max}|b_i|_{max}$

This strategy allows the minimization of the strength to be applied to the 12 strength in order to control DA

Application to the "standard error seed"

Therefore the simultaneous compensation of Qx + 2 Qy = 56 and 3 Qx = 56 reads

$$\begin{array}{|c|c|c|c|c|c|} \hline -0.35349 \times 10^{-2} + i0.52999 \times 10^{-3} + & & \text{with } k_{2,1}^{l} \ computed \\ + (k_{2,1}^{1} + k_{2,2}^{1} - k_{2,3}^{1})b_{1} + (k_{2,4}^{1} - k_{2,5}^{1} + k_{2,6}^{1})b_{2} \\ + (k_{2,1}^{2} + k_{2,2}^{2} - k_{2,3}^{2})b_{3} + (k_{2,4}^{2} - k_{2,5}^{2} + k_{2,6}^{2})b_{4} &= 0 \end{array} \right. \\ \hline & \text{for 3 Qx = 56 @ WPC} \\ \hline & 0.96308 \times 10^{-2} + i0.32631 \times 10^{-2} + & & \text{with } k_{2,4}^{l} \ computed \\ \hline & \text{with } k_{2,4}^{l} \$$

This is a system of 4 equation in the 4 unknown b_1, b_2, b_3, b_4

For the seed #3 we find
$$\begin{aligned}
b_1 &= -0.0523366015 \quad m^{-3} \\
b_2 &= -0.0250475799 \quad m^{-3} \\
b_3 &= -0.0307216893 \quad m^{-3} \\
b_4 &= -0.0214847964 \quad m^{-3}
\end{aligned}$$
Negligible effect on chromaticity
$$\left| \frac{\partial Q_{x/y}}{\partial (\delta p/p)} \right| < 0.04$$

 $\overline{}$

DA scan verification

Resonances from standard error seed

including compensation compensation

Beam loss prediction

For the "standard error seed"

Elimination of 3rd order components cut beam loss to ~3% (academic example II)

Successful implementation of a compensation strategy for removing Qx + 2Qy = 56 without exciting other resonances

Multi-particle simulations confirm that beam loss are cut to 2.5% +/-2%No periodic resonance crossing can happen without a resonance to be crossed ;-)

Note that 2Qx + 2 Qy=56 does not give any problem!! : Quite consistent with present understanding of periodic resonance crossing...

These results are theoretically valid for the standard error seed: what happen with the other seeds?

ROBUSTNESS OF THE CORRECTION SCHEME

Robustness of the correction scheme: first analysis

We corrected the resonance Qx + 2 Qy = 56 for the "standard error seed" (seed #3)

What happen with the other 29 seeds ?

Can we make a compensation without reducing too much DA?

New Issues

Does space charge affect the resonance compensation scheme?
 At what level the compensation has to be carried out ?

Definitions of the Compensation Indicators

 DA/σ

Statistic analysis with driving terms

Statistic analysis with beam dynamics based Compensation Indicators

For each of the 30 seeds we compute the compensation indicators with and without compensation

Statistical results

Compensation indicators for the "standard error seed"

	DA(wp1)/σ	DA(wpc) /σ	DA(wpi) /σ	b ₁ [m ⁻³]	b ₂ [m ⁻³]	b ₃ [m ⁻³]	b₄ [m⁻³]
uncompensated	4.76	2.93	3.64	0	0	0	0
compensated	4.68	3.96	4.66	-0.05	-0.025	-0.0307	-0.0214

Statistical analysis of the Compensation Indicators

	DA(wp1) /σ	DA(wpc) /σ	DA(wpi) /σ	b ₁ [m ⁻³]	b ₂ [m ⁻³]	b ₃ [m ⁻³]	b ₄ [m ⁻³]
uncompensated	4.64 +/- 0.10	3.18 +/- 0.45	4.03+/- 0.30	0	0	0	0
compensated	4.64 +/- 0.09	3.94 +/- 0.23	4.39 +/- 0.14	0 +/-0.03	0 +/-0.03	0 +/-0.02	0 +/-0.02

(Notation: average +/- standard deviation)

Existence of Residual Resonances

From the statistic we find that DA(wp1) is not affected by the correction scheme

We take DA = $4.7/\sigma$ as a reference value

DA(wpi)/DA(wp1) Uncompensated

SUMMARY

The method of controlling of Qx + 2Qy = 56 on the cancellation working point reduces the driving terms of a factor larger than 100

BUT

Verification with beam dynamics shows that some residual resonance at WPI is still found

Multiparticle tracking should be carried out for other seeds to confirm the dependence (or absence) of beam loss performance from residual resonances

-> Development of further more complex schemes of resonance control

Are we sure the effect of space charge does not affect the resonance compensation scheme ?

NEXT STEP EXPERIMENTAL VERIFICATION ON SIS18

Relevant issues for experiments

It becomes then necessary to develop a measurement strategy of nonlinear error

- Measurement in magnets 1)
- Beam Based Measurements 2)

SIS18 becomes a "test accelerator" for the high intensity beam dynamics issues of SIS100

Resonances in SIS18

Reconstruction of sextupolar components in SIS18 with the nonlinear tune response matrix method

Simultaneous 2 BPM acquisition

Comparing with magnet measured data

Experimental verification in SIS18

Conclusion

- Space charge incoherent effect are responsible of beam loss; 1)
- A dedicated measurement campaign gave us confidence that 2) we understand the main ingredients of the space charge and resonance driven beam loss;
- In order to control beam loss in a high intensity bunched beam we have to: 3)
 - Optimize the location of the working point; 1)
 - 2) Control of the relevant resonances;
 - 3) Flatten longitudinal bunch distribution;
- 4) We have implemented for moderate error seed the compensation of the resonance Qx + 2 Qy = 56 leaving the other resonances unchanged: We find a reduction of the beam loss of a factor 10 on the first injected bunch Therefore @5E11 beam loss ~5% to be doubled to 10% (factor 2 from benchmarking)

Over the full cycle @5E11 after correction of Qx + 2 Qy = 56 beam loss expected of ~5% for the "standard error seed"

Conclusion

- 5) <u>There is no prove that we are able to compensate any error seed</u> <u>induced resonance:</u> further multi-particle simulations are necessary to clarify which level of residual resonance is allowed;
- 6) Development of more efficient compensation schemes;
- 7) It is mandatory to perform an experimental campaign in SIS18 for testing these findings.

Final Remarks

The simulations here presented are in some case unfinished because of several computer crash in the central system: GSI needs to power more the computer center and renew the PROCESSOR-PARK

GSI needs to form and keep the competences apt to face this class of problems for the time SIS100 will be constructed

Optics at the location of the correction system

12 group of correctors each formed by Corrector elements: 1 quadrupole, 1sextupole, 1 octupole

Optics at the position of the corrector sextupoles for the "cancellation WP"

ψγ/(2π)	αγ	βγ	D'x	Dx	ψx/(2π)	αχ	βx	Position	Label	Nele
0	-1.39403	17.1682	-0.00179	0.02449	0	0.07827	5.89921	0	corr_oct1	1
0.96661	-0.03965	5.84209	-0.0039	0.04476	0.96545	1.42584	17.78347	56.6	corr_oct2	535
3.11111	-1.39403	17.1682	-0.00179	0.02449	3.11111	0.07827	5.89921	180.6	corr_oct3	2494
4.07772	-0.03965	5.84209	-0.0039	0.04476	4.07656	1.42584	17.78346	237.2	corr_oct4	3028
6.22222	-1.39403	17.1682	-0.00179	0.02449	6.22222	0.07827	5.89921	361. 2	corr_oct5	4987
7.18883	-0.03965	5.84209	-0.0039	0.04476	7.18767	1.42584	17.78347	417.8	corr_oct6	5513
9.33333	-1.39403	17.1682	-0.00179	0.02449	9.33333	0.07827	5.89921	541.8	corr_oct7	7472
10.29994	-0.03965	5.84209	-0.0039	0.04476	10.29878	1.42584	17.78347	598.4	corr_oct8	7998
12.44444	-1.39403	17.1682	-0.00179	0.02449	12.44444	0.07827	5.89921	722.4	corr_oct9	9957
13.41105	-0.03965	5.84209	-0.0039	0.04476	13.40989	1.42584	17.78347	779.0	corr_oct10	10483
15.55556	-1.39403	17.1682	-0.00179	0.02449	15.55555	0.07827	5.89921	903.0	corr_oct11	12442
16.52216	-0.03965	5.84209	-0.0039	0.04476	16.521	1.42584	17.78347	959.6	corr_oct12	12986

We split the 12 sextupoles into 2 families

 $K_{2,1}^1, K_{2,2}^1, K_{2,3}^1$ $K_{2,4}^1, K_{2,5}^1, K_{2,6}^1$ -> $\beta_x = 17.7 \text{ m}$ $K_{2,1}^2, K_{2,2}^2, K_{2,3}^2$ $K_{2,4}^2, K_{2,5}^2, K_{2,6}^2$ -> $\beta_x = 5.8 \text{ m}$

Assigning the strength in each sub-family

Minimum DA disturbance criteria: we require to keep the strength of the sextupoles as low as possible

Optics considerations:

Subfamily $K_{2,1}^1, K_{2,2}^1, K_{2,3}^1$

At WPC each sextupole has $\Delta \theta = 120^0$ + a multiple of 360° form the next of the same sub-family

With this configuration the sub-family

 $K_{2,1}^1, K_{2,2}^1, K_{2,3}^1$

creates a driving term

 $\propto b_1 e^{i\pi/6}$

The 3 sextupoles creates an effective $\propto 2b_1$ strength

2nd sub-family

Subfamily $K_{2,4}^1, K_{2,5}^1, K_{2,6}^1$ \longrightarrow At WPC each sextupoles is $\Delta \theta = 120^0$ + a multiple of 360° form the next $K_{2,4}^1 = b_2$ With this configuration the sub-family effective $K_{2,4}^1, K_{2,5}^1, K_{2,6}^1$ compensation "direction" creates a driving term $\propto b_1 e^{i\pi 5/6}$ $K_{2,6}^1 = b_2 \qquad \qquad K_{2,5}^1 = -b_2$ Therefore $K_{2,1}^1, K_{2,2}^1, K_{2,3}^1$ and $K_{2,4}^1, K_{2,5}^1, K_{2,6}^1$ creates two independent direction in the complex plane 120° degree apart

The same strategy is applied to the 2 sub-families $K_{2,1}^2, K_{2,2}^2, K_{2,3}^2, K_{2,4}^2, K_{2,5}^2, K_{2,6}^2$

Definition of sub-families

The simultaneous compensation of 2 resonances require 4 "knobs"

We divide each sub-family into 2 sub-families

Nele	Name strength	Name object
1	$K_{2,1}^{2}$	corr_oct1
535	$K_{2,1}^{1}$	$\operatorname{corr_oct2}$
2494	$K_{2,2}^{2}$	$\operatorname{corr_oct3}$
3028	$K_{2,2}^{1}$	$\operatorname{corr_oct4}$
4987	$K^{2'}_{2,3}$	$\operatorname{corr_oct5}$
5513	$K^{1}_{2,3}$	$\operatorname{corr_oct6}$
7472	$K^{2'}_{2,4}$	$\operatorname{corr_oct7}$
7998	$K_{2,4}^{1}$	$\operatorname{corr_oct8}$
9957	$K^{2'}_{2,5}$	$\operatorname{corr_oct9}$
10483	$K^{1^{'}}_{2,5}$	$\operatorname{corr_oct10}$
12442	$K_{2,6}^{2'}$	$corr_oct11$
12986	$K_{2.6}^{\bar{1},\circ}$	$\operatorname{corr_oct12}$

$$egin{aligned} η_{\text{x, max}} = 17.7 \text{ m} \ &K_{2,1}^1, K_{2,2}^1, K_{2,3}^1 \quad K_{2,4}^1, K_{2,5}^1, K_{2,6}^1 \end{aligned}$$

$$\beta_{x,\min} = 5.8 \text{ m}$$

 $K_{2,1}^2, K_{2,2}^2, K_{2,3}^2, K_{2,4}^2, K_{2,5}^2, K_{2,6}^2$

Strategy: each sub-family provides a degree of freedom in the complex plane

Optimal requirement: each family is a combination of elements which provides a 90 degree phase from the next sub-family

Simulation benchmarking

Weak modeling of the SIS18 nonlinear dynamics close 3rd order resonance

SIS100 multipoles

SIS100_Dipole_CSLD8b

Fm_10.17_CO_xy_p0.0_p0.0_mm" armonics_20100609.h5:	
ysky_Profile/" 0547373696328898E-11 0 38317062E-05 -5.8053823331158389E-10 1 1469640E-02 -3.425653627695576E-08 2 9504795E-02 -2.4356530674135484E-06 3 35057312E+02 3.8357509219972509E-05 4 90548240E+02 3.0914907235399965E-02 5 2545557E+04 -1.8555663052472367E+01 6 8252938E+05 -4.5835022334220633E+03 7 93612607E+04 -3.8163902568321079E+08 9 1835293E+10 3.8163902568321079E+08 9 18432939E+14 -9.2536963799966492E+10 10 183605724E+18 4.4905049474378860E+15 12 16109133E+19 -1.45575953096211676E+20 14 507530266211676E+22 -1.2575953096211676E+22 14	Entrance
<pre>In 10.17_CD_xy_p0.0_p0.0_nm" armonics_20100609.h5: sky_Pcofile/" 88527802E-02 -8.0460622403658862E-11 0 3075985E-06 -4.4286349322627113E-09 1 17349000E-02 -2.6132592908204184E-07 2 18285333E-03 -1.8587012098560848E-05 3 3861124E+01 2.9261019441204273E-04 4 336645212E+00 2.3583431753596007E-01 5 13311797E+04 -1.4162812922709438E+02 6 1331108E+05 -3.496523942733432E+04 7 4350262E+09 1.0324892588690210E+07 8 20167362E+10 2.9113326625993242E+09 9 1167362E+13 -2.1251269228490359E+14 11 125378656E+13 -2.1251269228490359E+14 11 12536155E+13 -2.1251269228490359E+14 11 12536155E+19 1.1090489334002389E+19 13 142712128E+23 -9.5935636945850047E+20 14 1142267E+22 -3.2804988706914617E+23 15 </pre>	Bodv
Tm_10.17_CD_Xy_p0.0_p0.0_mm" srmonics_20100609,h5: ysky_Profile/" yskyky_Profil	Exit

QUADRUPOLE

odel of quadrupole 25/6/2010 ======

		Model of daga abole	20/0/2010		
ISIS100 I Quade I data Eqb0 Eqb1 Eqb2 Eqb2 Eqb2 Eqb4 Eqb5 Eqb5 Eqb6 Eqb7 Eqb8 Eqb8 Eqb9	Quadrupole6 TurnsYl 11 4 hdf/SISI00_Q rupole/Turns MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE	Turn 60kR_Cntr_Bpho_Tm_12.23_C0 uadruppleFTurn_20100623,h5 (703/0percalr/StaticCalcu -2.6789881018894428E-14 2.1717022154679769E-01 -9.4521226576819973E-11 3.7858283188846437E-03 7.041442682841817E-07 3.0194294633632222E+02 -7.8478544512944073E-02 -1.8269515944715394E+06 4.7775705574752483E+03 1.5853417177689340E+11	_vg_p0.0_p0.0_mm" : lation/V1/" 5.5045898388567806E-14 1.9856320529300420E-12 1.9401448718616971E-10 1.0501181037334316E-08 -1.431873375984776E-06 -2.8051263507461471E-04 1.6019533277467247065E-01 2.5709785026550517E+01 -9.7507153716628163E+03 -1.7429770135777944E+06	0 1 2 3 4 5 6 7 8 9	sody
Eqb10 Eqb11 Eqb12 Eqb13	MULTIPOLE MULTIPOLE MULTIPOLE MULTIPOLE	-2,5512932132258266E+08 -6,9973814030639240E+15 9,8111951662325020E+12 1,2725759662788647E+20	5.2083611876728094E+08 9.9896489034391388E+10 -2.0032780989903805E+13 -4.1250219682152360E+15	10 11 12 13	
Eqb14 Eqb15 !SIS100 !"Quad6	MULTIPOLE _Quadrupole6 TurnsV1 I1 4	-2.130339/834814632E+1/ -8.7801330870650991E+23 Jurn 60kA End Bpho Tm 12.23 CO	4,35189/0//03//358E+1/ 9.4854103306132488E+19 хч р0.0 р0.0 mm"	14 15	
!"data_ ! /Quad	hdf/SIS100_Q rupole/Turns	luadrupole6Turn_20100623.h5 6/D3/OperaCalc/StaticCalcu	: lation/V1/"		ų
Eqf0 Eqf1	MULTIPOLE MULTIPOLE	-2.7060318826655702E-13 3.1164889913266550E-02	1,1626213256498432E-13 3,7901786032567582E-12	0 1	X.
Eqf2 Eaf3	MULTIPOLE	-9.5477779762820312E-10 -1.4490292439969379E-01	4.0969260285906951E-10 2.0044610087550655E-08	23	ш
Eqf4	MULTIPOLE	7.1127170011828505E-06	-3.0181254972048956E-06	4	
Eqf6	MULTIPOLE	-7.9272672909384778E-01	3.3791339547476712E-01	6	ŭ
Eqf/ Faf8	MULTIPULE	3,20311//498/68162E+0/ 4.8259166343405115E+04	4,90/4/2/624193621E+01 -2.0567353101754215E+04	8	Ž
Eqf9 Forf10	MULTIPOLE	-1.4378359763176462E+12	-3.3269865841298578E+06	9 10	ŋ
Eqf11	MULTIPOLE	-2.9558496053583675E+15	1,9068195721472757E+11	11	5
Eqf12 Eqf13	MULTIPOLE	9,9104811140321641E+13 1,0139123133611631E+21	-4,2259100934876094E+13 -7,8738228587503470E+15	12 13	Ē
Eqf14 Eqf15	MULTIPOLE	-2,1521204668226107E+18 -2,5358360899375195E+25	9,1809992911089267E+17 1,8105707307445312E+20	14 15	ш

V. Kapin visit Summer 2010

DIPOLE

GSI