

SIMULATION OF SIS-100 SLOW EXTRACTION WITH MAGNET ERRORS

Stefan Sorge

Accelerator Physics Department

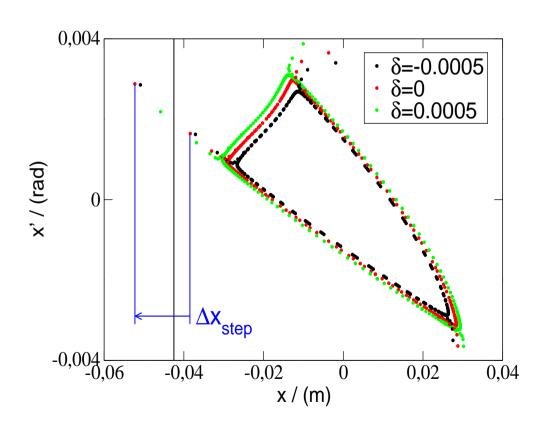
MAC Meeting on December 1, 2010

Outline

- Slow Extraction
- Magnet Errors and Space Charge
- Numerical Model and Results
- Conclusions

Slow Extraction

Slow Extraction I



Based on excitation of 3rd order resonance, SIS-100: 3 $\nu_{x,res} = 52$.

Resonance excited by means of 11 resonant sextupoles.

- Triangular stable phase space area.
- Particles leave along separatrices.
- ullet Advance in real space during three turns: Spiral step Δx_{step}
- Spread in separatrices due to momentum spread.

$$\Delta \nu_x = \nu_x \cdot \xi_x \cdot \delta$$

Slow Extraction II

Spread in separatrices

1

Inherent mismatch $\Delta x^{'}$ between phase space angle of particle trajectory and septum blade.

Effective thickness of septum blade d.

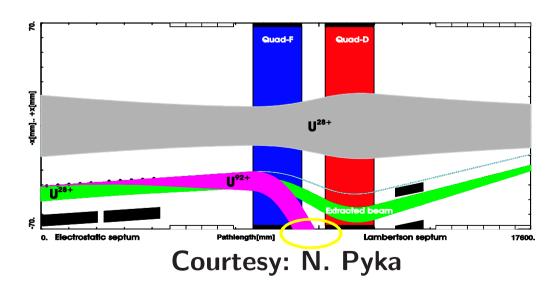
Inherent beam loss at septum blade due to particle collisions.

$$P_{loss} = rac{d}{\Delta x_{step}}$$

Consequences of Beam Loss in SIS-100

Beam loss at ES septum blade causes:

- Energy deposition in ES septum blade and following quadrupole doublet.
- Vacuum degradation due to desorption in quadrupole doublet.


Loss budget:

Energy deposition:

 \sim 5 % at maximum energy.

Desorption: $\sim 5\%$

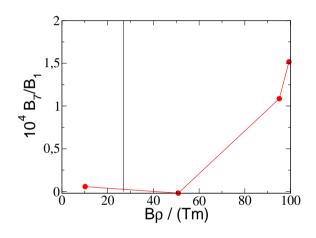
(Low desorption material)

Question: How is beam loss modified by magnet errors and space charge?

Magnet Errors and Space Charge

Magnet Errors: Systematic Field Errors

Magnet model CLSD8b dipole and 6 Turn quadrupole magnet from June 2010.


Error multipoles up to order n = 16, (dipole: n = 1). (Akishin et al.)

Errors depend on rigidity.

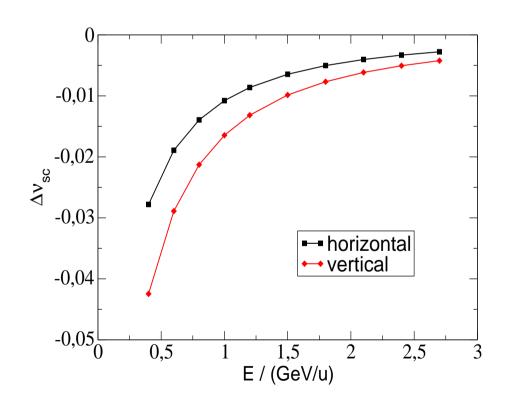
Example: $10^4 \cdot B_7/B_1$ of dipole

strongly increased for high energies.

Errors have longitudinal structure.

Example: $10^4 \cdot B_3/B_1$ of dipole,

(schematic).


Data from V. Kapin

Space Charge

Laslett tune shift for coasting Gaussian beam

$$\Delta
u_{sc,z} = rac{N_p r_0}{2\pi eta^2 \gamma^3 \sqrt{\epsilon_{z,rms}} \left(\sqrt{\epsilon_{x,rms}} + \sqrt{\epsilon_{y,rms}}
ight)} \;, \quad z=x,y$$

- Energy range for U^{28+} : $E \in [400 \ \mathrm{MeV/u}, 2700 \ \mathrm{MeV/u}]$
- Tune shift much larger for small energies.
- In simulations: non-linear kicks according to Gaussian shape.

Multi-Particle Tracking

Multi-Particle Tracking: Parameters

Working point, $u_x,
u_y$

Time structure of the beam

Reference ion

Maximum number of ions per pulse

Energy range for slow extraction

Transverse emittance at $E=0.4~{
m GeV/u}$, (2σ)

Transverse emittance at $E=2.7~{
m GeV/u}$, $(2\sigma)\,|\,(6.4 imes2.7)~{
m mm}~{
m mrad}$

RMS momentum spread

17.3, 17.8

Coasting beam

128+

 $5 \cdot 10^{11}$

(0.4 - 2.7) GeV/u

 (24×10) mm mrad

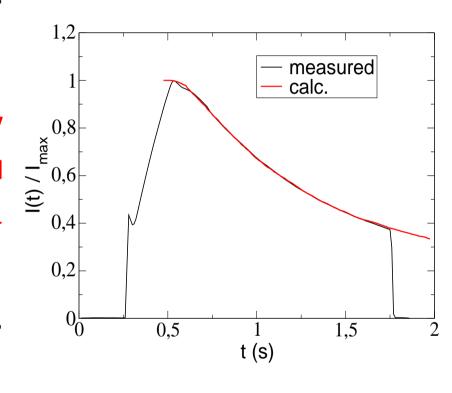
 $5 \cdot 10^{-4}$

Multi-Particle Tracking

- Thin lens tracking using MAD-X code.
- 5000 Test particles during 15000 turns, corresponding time interval:

$$\Delta t \in [0.056, 0.076] \text{ s, (realistic } \Delta t_{min} = 1 \text{ s).}$$

- "Frozen" space charge according to Gaussian beam introduced by 192 BEAMBEAM elements.
- "Knock Out" (KO) extraction:
 - Horizontal RF noise excitation to drive particle diffusion from stable phase space area.
 - To provide band width: 26 sinusoidal kickers: $\Delta x^{'}(t) = \Delta x^{'}_a \sin(2\pi f t)$
 - Large amplitude because of small time interval. \rightarrow effect on beam loss?

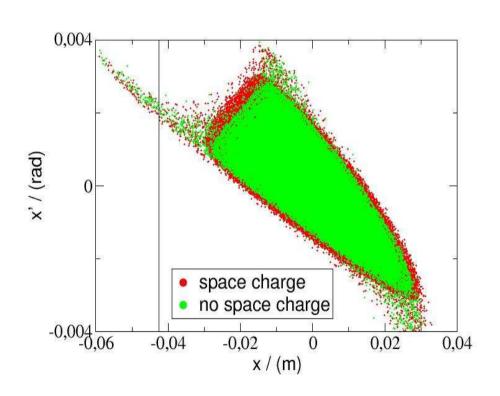

Multi-Particle Tracking: RF Noise Excitation

• RMS momentum kick in case of diffusion:

$$\langle (\Delta x^{'})^2
angle \propto rac{1}{\Delta t}$$

 RF noise generates diffusion. Proved by very good reproduction of noise generated beam loss measured in SIS-18 by computer simulation.

(Study to measure acceptance of SIS-18) 1 .


Decrease in Δt by factor $20 \to \text{Increase}$ in $\sqrt{\langle (\Delta x')^2 \rangle}$ by factor ≈ 4.5 , remains $< 10^{-5}$, cp. spread of separatrices due to momentum spread $\sim 10^{-4}$.

¹ S. Sorge, G. Franchetti, and A. Parfenova, IPAC 2010, Kyoto, Japan

Multi-Particle Tracking: Phase Space Plot

Formation of stable phase space area and separatrices also with magnet errors and/or space charge.

Figure: example without magnet errors,

100 test particles,

$$E=400~{
m MeV/u}$$
,

$$(\Delta
u_{sc,x}, \Delta
u_{sc,y}) = (-0.028, -0.043)$$
.

Multi-Particle Tracking: Beam Loss

Low energy: $E=400~{
m MeV/u}$

	without space charge	with space charge
without magnet errors	$(3.8 \pm 0.3)~\%$	$(5.2 \pm 0.5)~\%$
with magnet errors	$(5.7 \pm 0.3)~\%$	$(9.0 \pm 0.7)~\%$

High energy: $E=2.7~{\rm GeV/u}$

	without space charge	with space charge
without magnet errors	$(3.6 \pm 0.7)~\%$	$(3.6 \pm 0.5)~\%$
with magnet errors	$(6.0 \pm 0.8) \ \%$	$(7.2 \pm 0.7)~\%$

Conclusions

- Tracking study on influence of magnet errors and space charge field of the beam to beam loss during slow extraction.
- Study suggests that slow extraction will still work.
- Beam loss is increased.
- Beam loss at low energy: possibly critical because of desorption.
 - Problem could be mitigated because of reduction of space charge during extraction.
 - Goes beyond frozen space charge model.
- Beam loss at high energy: Above loss budget. Possibly less critical because of opportunities to improve, e.g.
 - Realistic momentum spread is smaller.
 - WP can be chosen closer to resonance because of small emittance.
- Additional issue to later study: Influence of electrons from beam gas interaction