

Beam Loss Simulations during acceleration

Giuliano Franchetti MAC 5 9-10 May 2011

Overview

- From injection plateau to acceleration ramp
- Beam Loss Mechanism during acceleration
- Beam Loss Prediction during acceleration
- Conclusion and Remarks

SIS100 injection plateau scenario

Problem of control of beam loss for the bunched beams in SIS100 during 1 second

SIS100 Modeling

- 1) Linear Lattice
- 2) All insertions (i.e. each element sizes + all septums, NO Collimators)
- 3) Each magnet has nonlinear field modeled via 3 localized nonlinear kicks of the systematic errors
- 4) Displacement of quadrupoles is modeled by insertion of a dipolar kick in center of quadrupole
- 5) Inclusion of all magnet correctors: steerers and sextupole for chromatic correction and resonance corrector sextupoles (in addition with quadrupoles and octupoles)

Magnet design: CSLD Pavel Akishin, Anna Mierau, Pierre Schnizer, Egbert Fischer 3. June 2010 Magnet multipoles: V.Kapin, P. Schnizer, A. Mierau Kapin, V.; Franchetti, G. ACC-note-2010-004 Lattice: J. Stadlmann, A. Parfenova, S.Sorge

Resonances excited by the "standard seed"

DA/σ

Resonances crossing the space charge tune-spread

```
2 Qy = 37
Qx + 2 Qy = 56
3 Qx = 56
2 Qx + 2 Qy = 75
4 Qx = 75
```

Beam loss versus beam intensity

Beam intensity is relevant for beam survival

The 3rd order resonance was responsible of the periodic resonance crossing

Compensating the relevant resonance mitigates beam loss

Dynamics during acceleration

SIS100 acceleration

The acceleration Ramp

Magnet modeling during acceleration

Effect of the eddy current

Consequence: alteration of lattice resonances

Statistical view of the possible resonances

 $[\langle DA \rangle - 3 \text{ st.dev.}(DA)]/\sigma$

Change of RF bucket

Space charge damping

Beam size shrinking

Beam size scaling with energy

$$\frac{\sigma_x}{\sigma_{x0}} = \sqrt{\frac{\gamma_0\beta_0}{\gamma\beta}}$$

At the beginning of the ramp

$d \sigma_x$ _	1	$(B\rho)_1$	1
$\frac{1}{dn} \overline{\sigma_{x0}}$	$\overline{2N}$	$\left\lfloor \overline{(B\rho)_0} \right\rfloor$	

In 1000 turns

size damping

$$\Delta \left[\frac{\sigma_x}{\sigma_{x0}} \right]_{1000} = -2.6\%$$

periodic crossing amplitude increasing 3 sigma \rightarrow 4.7 sigma growth of 1.7 sigma

Therefore in 1000 turns the growth is 1.7 sigma

Acceleration: Code Modeling

The beam dynamics modeling is inconsistent

The beam dynamic issues

 $\left[\langle DA \rangle - 3 var(DA)\right]/\sigma$

Study Strategy

We keep conservative:

Keep the error seed of the storage also during the ramp

Closed orbit distortion remains during ramp of the order of storage

Do not compensate any resonance

We study the higher intensity case $I = 5 \times 10^{11}$ ions

Verification of old results

Acceleration keeping the "storage bucket"

Acceleration keeping the "storage bucket"

Acceleration with "realistic" bucket

Acceleration with "realistic" bucket

Conclusions and Remarks

For the **standard error seed** we find that during acceleration the bunches stored experiences ~ 7% beam loss distributed over half acceleration ramp

This prediction is **conservative** as it is based on an uncompensated machine

As for the result of MAC4, this prediction is affected by the error seed taken, which is here the **standard error seed: no result is claimed for other errors seeds**

The modeling of the acceleration is inconsistent and its validity should be reconfirmed (although beam damp during acceleration fits very well with theoretical prediction)

Experimental verification in SIS18 should be foreseen to benchmark code predictions (very difficult)