SIS100 Proton Operation: Gamma Transition

D. Ondreka 9th FAIR MAC, GSI, 21.05.2013

Outline

- Protons in FAIR
- SIS100 Transition Shift Scheme
 - Status of development
 - Concerns about low-η dynamics
 - Conclusions
- SIS100 Transition Jump Scheme
 - Motivation
 - Description
 - Lattice changes
 - Fast jump quadrupoles
 - Conclusions
- Proposal

(Anti-)Protons in FAIR

- Main Experiment PANDA @HESR
- Anti-Proton production
 - Proton production chain: p-Linac -> SIS18 -> SIS100 -> pbar-Target
 - Anti-Proton production chain: pbar-Target -> CR (-> RESR) -> HESR
- Design goal: up to 4.10⁷ anti-protons/s
 - SIS100 output per cycle: 2.10¹³ p
 - CR output per cycle: 2.108 pbar
 - Cooling time in CR: 5...10 s
 - · Accumulation rate dominated by:
 - Number of protons from SIS100
 - Cooling time in CR
- Challenges for SIS100
 - Escaping transition
 - Intense compressed single bunch

HELMHOLTZ

Outline

- Protons in FAIR
- SIS100 Transition Shift Scheme
 - Status of development
 - Low-η dynamics
 - Conclusions
- SIS100 Transition Jump Scheme
 - Motivation
 - Description
 - Lattice changes
 - Fast jump quadrupoles
 - Conclusions
- Proposal

Transition Shift Scheme: Optics

- Operation scheme for ions can't be used:
 - Optics for ion operation have $\gamma_t \approx 15$
 - During ramp $\gamma = 5.3 \dots 32.1$
 - Transition crossing unavoidable
- Idea: Distort optics to shift γ_t up
 - Increase γ_t by increasing tune to Q_h = 21.8
 - Split focusing quads in two families F1 and F2
 - Increase strength of F1 to create negative dispersion in the arcs such that $\gamma_t = 45$
 - Optics distortions tolerable due to small transverse beam emittances
- Basic linear properties are okay
 - Fast extraction mainly unaffected (vert. plane!)
 - · Closed orbit correction works as for ions

HELMHOLTZ

SIS100 Proton Operation / D. Ondreka

Transition Shift Scheme: Creation of Single Compressed Bunch

- Operation scheme for ions can't be used:
 - Stacking of 4 batches at injection
 - Pre-compression and bunch-rotation at flattop
 - Not suitable for protons due to small synchrotron frequency at flattop:

$$\eta = \frac{1}{\gamma^2} - \frac{1}{{\gamma_t}^2} = 0.0005 \rightarrow f_s = 16 \text{ Hz}$$

- Proton scheme
 - Stacking of 4 bunches at injection
 - Acceleration of single bunch at h=1 in SIS18
 - Transfer of four cycles into SIS100 at h=10
 - Matching with higher harmonics in SIS18
 - Creation of single bunch
 - Bunch merging to 2 bunches @ h=5
 - Batch compression to 2 bunches @ h=10
 - Bunch merging to 1 bunch @ h=5
 - Compression
 - Acceleration with constant voltage
 - Adiabatic compression to final bunch length

Synchrotron frequency f _s		
lons (Ext.)	760 Hz	
Protons (Inj.)	350 Hz	
Protons (Ext.)	16 Hz	

Transverse Dynamics: Chromaticity Correction

- Large chromatic tune spread
 - Large chromaticities in shifted optics
 - Large momentum spread of single bunch
- Chromaticity correction mandatory
 - Target value for tune spread: $\Delta Q = \pm 0.05$
 - Correction scheme different from ions due to oscillating dispersion function
 - C-Sextupoles in one sector can't have same sign
- Change of sextupole powering scheme
 - · Present scheme incompatible with protons
 - 6 families, each linking 4 CH/CV of two adjacent sectors
 - Effectively only 2 families due to symmetry breaking
 - New scheme required
 - Group 6 CH/CV of identical cells into a family
 - 8 families respecting symmetry
 - Disadvantage: longer cable lengths
 - Change request in preparation

21.05.2013

Transition Shift Scheme: Longitudinal Dynamics

- Longitudinal simulations
 - Inclusion of longitudinal space charge
 - Inclusion of beam loading
- Results
 - Merging and batch compression
 - Feasible within reasonable times
 - Beam loading has significant influence
 - Emittance dilution of injected beam by factor 3 required to alleviate beam loading effects
 - Acceleration
 - Emittance dilution leads to
 - Slow transition to full ramp rate
 - Slight reduction of full ramp rate
 - Simulation can't be trusted close to flattop because effect of η₁ not included

Step	Time [ms]
Merging 4 -> 2	50
Batch compression	110
Merging 2 -> 1	100
Transition to max. rate	300
Acceleration	420
Total time	980

[Images and data courtesy of O. Chorniy]

Transition Shift Scheme: Distorted Buckets Near Flattop

- Longitudinal dynamics near flattop
 - Phase slip becomes very small
 - Higher orders can't be neglected
 - Bucket dominated by new fixed point
 - Shorter bunches with higher momentum spread
 - Asymmetry in momentum distribution
 - Chromaticity correction to $\Delta Q = \pm 0.05$ helps
 - Larger bucket due to reduction of η_1
- Implications
 - Without field errors no problems
 - · Results with field errors ambiguous
 - Short-term (500 turn) dynamic aperture reasonable
 - Long-term tracking simulations (32000 turns) give losses of few per cent
- Limitation of present studies
 - · Only stationary buckets, no beam loading
 - Origin of losses needs to be better understood
 - Further studies necessary

[Images and data courtesy of S. Sorge]

21.05.2013

SIS100 Proton Operation / D. Ondreka

0

Transition Shift Scheme: Conclusions

- Basic properties of the scheme seem okay
 - Injection, extraction
 - Orbit and chromaticity correction
- Non-linear aspects raise some concerns
 - η_1 -dominated buckets near flattop
 - Shouldn't we rather avoid this regime?
 - What about beam stability in this regime?
 - Horizontal beta functions
 - Large peak values amplify non-linear field errors
 - Easily distorted by gradient errors
- Feasibility of the transition shift scheme can't be granted as of today
 - Further studies necessary
 - Time consuming and involved
- Can we afford uncertainty without fallback?
 - Design decisions have to be taken **now**!

F(\] | R @ 🕞 🚍 1

Outline

- Protons in FAIR
- SIS100 Transition Shift Scheme
 - Status of development
 - Low-η dynamics
 - Conclusions
- SIS100 Transition Jump Scheme
 - Motivation
 - Description
 - Lattice changes
 - Fast jump quadrupoles
 - Conclusions
- Proposal

Transition Jump Scheme: Motivation

- Concerns with transition shift scheme require fallback option
- Idea: Implement transition jump scheme
 - Time-honored scheme for proton accelerators in relevant energy range (PS, AGS)
- Advantages for SIS100
 - Avoid η_1 -dominated regime at flattop
 - Avoid creation of single bunch at injection (reduces all intensity effects until flattop)
- Challenges:
 - Lattice layout
 - Integration of jump quadrupoles
 - Creation of single bunch at flattop

	SIS100	PS (AD)	AGS (SE)	
#protons/cycle	2·10 ¹³	2 ⋅10 ¹³	7·10 ¹³	
Circumference [m]	1083.6	628.3	807.0	
Gamma transition	8.9	6.1	8.5	
RF Voltage [kV]	280	200	400	
Injection	ו			
Energy [GeV/u]	4.0	1.4	1.9	
#bunches	4	4	6	
Harmonic number	10 (5)	8	6	
Extraction				
Energy [GeV/u]	29.0	25.1	24.0	
#bunches	1	4	dc	
Harmonic number	5	20	-	
RF gymnastics	merging + batch comp.	batch comp. + bunch rot.	debunching + spreading	

Transition Jump Scheme: General Features

- Figure of merit: speed of transition crossing
 - Typical values for jump: $\Delta \gamma_t = 1...2$
 - Typical jump time: 0.5 ms
- How to modify γ_t ?
 - \bullet γ_t depends on dispersion:

$$\alpha_c = \frac{1}{{\gamma_t}^2} = \oint \frac{D(s)}{\rho(s)} ds$$

- Modify dispersion in the arcs to change γ_t
- Standard strategy: use of π-doublets
 - Two quadrupoles of opposite strengths separated by π in horizontal phase advance
 - Tune shifts zero by construction
 - Local modification of beta function
 - Global modification of dispersion function
 - $\Delta\gamma_t$ linear in strength for adequate dispersion

$$\Delta \gamma_t \sim k (D_1^2 - D_2^2) + O(k^2)$$

FAIR BD Meeting / 16.11.2012

SIS100 Transition Jump / D. Ondreka

Transition Jump Scheme: Optics Design

Optical Properties			
10.4, 10.3			
8.9			
+1, +1			
6.8			
23.5			
±1			

- π-doublet quadrupoles in cells 9 and D
- Large difference in dispersion, i.e. large $\Delta \gamma_t$ with small k
- Close to ideal phase advance
- Small distortion of dispersion (little change in max!)
- Negligible distortion of beta functions
- Chromaticity slightly positive to avoid instabilities after crossing

HELMHOLTZ

 Q_2

F(4|Ř@ 🖬 🖬 👖

Transition Jump Scheme: Quadrupole Module Integration

- General layout of arc module
 - Upstream unit with QD and position US
 - Downstream unit with QF, ST, and position DS
 - Positions US, DS used alternatively for chromaticity sextupoles C{H,V} and BPMs
- Integration of jump quadrupoles QJ
 - Need to be placed into DS position
 - Same module configuration for cells 9 and D
 - Identical to existing CH-module when CH is replaced by QJ
 - QJ will be integrated like other correctors
- Replace present modules for cells 9 and D by new jump quadrupole module
 - Leads to omission of CV in cell 9
 - Chromaticity correction possible without this magnet for all operation modes
 - Saves 6 magnets + 1 power converter

21.05.2013

Beam

Transition Jump Scheme: Jump Quadrupoles

- Number of magnets: 6x2 (2 per sector)
- Placement in cryostat
 - Same location as chromaticity sextupole
 - Same current leads as chrom. sextupoles
 - Mounting onto main quadrupole yoke using standard adapter
- Preliminary s.c. magnet design exists
 - · Based on main quadrupole yoke
 - Uses nuclotron cable
 - Quench margin critical, but seems reachable
- N.c. design also possible due to short pulse
- Heat load in vacuum chamber
 - Average load below 1W despite large ramp rate
 - No problems for chamber cooling expected

Jump Quadrupole Parameters		
B'·L [(T/m)*m]	±0.4	
I _{max} [A]	±250	
Rise time [ms]	25	
Jump time [ms]	0.5	
Fall time [ms]	15	
Rep. rate [Hz]	0.5	
Av. heat load [W]	<10	

FAIR BD Meeting / 16.11.2012

SIS100 Transition Jump / D. Ondreka

Transition Jump Scheme: Conclusions

- SIS100 lattice can easily be rearranged to support a transition jump scheme
 - Optics with sufficient γ_t variation defined
 - Basic properties checked
 - All requirements for jump scheme satisfied
 - Simple change of quadrupole module configuration without side effects
- Jump quadrupole design feasible
 - Integration into cryostat possible
 - Average heat load within limits
 - Preliminary s.c. design exists
 - Alternatively n.c. design possible
- Furthers studies necessary to verify scheme
 - Long. dynamics and timing of transition crossing
 - Creation of compressed single bunch at flattop

[Risselada, CAS 1992]

Outline

- Protons in FAIR
- SIS100 Transition Shift Scheme
 - Status of development
 - Low-η dynamics
 - Conclusions
- SIS100 Transition Jump Scheme
 - Motivation
 - Description
 - Lattice changes
 - Fast jump quadrupoles
 - Conclusions
- Proposal

Proposal

- Change of powering scheme for chromaticity sextupoles
 - Mandatory for shift and jump scheme
- Change lattice to support jump scheme
 - Replace quadrupole modules in cells 9 and D by jump quadrupole module
 - Reserve space for jump quadrupoles
 - Make sure jump quadrupoles can be integrated
 - Omit CV from cell 9 (saves 6 magnets + 1 PC)
 - Jump quadrupole design can be done later
- Support of both shift and jump scheme
 - Further studies on both schemes
 - Based on results decide whether to implement jump scheme or leave as an upgrade option

Acknowledgements

I want to thank the following people for their contributions to the presentation:

- S. Sorge: Transverse dynamics of transition shift scheme
 - Orbit correction
 - Chromaticity correction
 - Dynamic aperture
 - Loss calculations
 - Dynamics in $\eta_1\text{-}\text{dominated buckets}$
- O. Chorniy: Longitudinal dynamics of transition shift scheme
 - Merging and batch compression
 - Acceleration
- K. Sugita/E. Floch: Preliminary design of s.c. jump quadrupoles
- S. Wilfert/C. Mühle: Estimates of eddy current losses
- J.P. Meyer: Module integration of jump quadrupoles

Thank you for your attention!

Transition Shift Scheme: Optics Change

- Shifted optics less favorable at low energy
 - Dynamic aperture tight for larger beam size
 - · Increased losses due to larger amplitudes
- Solution: Optics change during ramp
 - Use symmetric optics at injection
 - Smaller beta functions and dispersion
 - Smaller horizontal chromaticity
 - Dynamic aperture much larger
 - No losses observable for energies below 22 GeV
 - Challenges
 - Control of chromaticity during optics change
 - Design of optimal transition to shifted optics

21.05.2013

Transition Shift Scheme: SIS18

- Slow extraction from SIS18
 - SIS18 extraction optics has $\gamma_t = 5.6$
 - Max. energy for protons 4.7GeV/u \rightarrow γ = 6.1
 - Transition crossing during acceleration does not work
- Shifted optics with imaginary γ_t
 - Oscillating dispersion
 - Large beta functions
 - Slow extraction impossible with this optics
- Working scheme:
 - · Inject with normal injection optics
 - · Pass through extraction optics during ramp
 - Shift to imaginary γ_t at end of ramp
 - Debunch beam in shifted optics
 - Restore extraction optics moving γ_t through beam
 - Possible due to low intensity

21.05.2013