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(Anti-)Protons in FAIR 

 Main Experiment PANDA@HESR 

 

 Anti-Proton production 

• Proton production chain: 

p-Linac -> SIS18 -> SIS100 -> pbar-Target 

• Anti-Proton production chain: 

pbar-Target -> CR (-> RESR) -> HESR 

 

 Design goal: up to 4·107 anti-protons/s 

• SIS100 output per cycle: 2·1013 p 

• CR output per cycle: 2·108 pbar 

• Cooling time in CR: 5...10 s 

• Accumulation rate dominated by: 

 Number of protons from SIS100 

 Cooling time in CR 

 

 Challenges for SIS100 

• Escaping transition 

• Intense compressed single bunch 
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SIS100 

HESR 

RESR 

CR 

p-Linac SIS18 

pbar-Target 

PANDA 

SIS100 Design Parameters 

Energy (Inj.) 4.2 GeV/u 

Energy (Ext.) 29.0 Gev/u 

#Particles/Bunch 2·1013 

Final bunch length 50 ns 

Max. repetition rate 0.2 Hz 
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Qh Qv γt 

21.80 17.70 45.0 

Transition Shift Scheme: 

Optics 

 Operation scheme for ions can’t be used: 

• Optics for ion operation have γt ≈ 15 

• During ramp γ = 5.3 ... 32.1 

• Transition crossing unavoidable 

 

 Idea: Distort optics to shift γt up 

• Increase γt by increasing tune to Qh = 21.8 

• Split focusing quads in two families F1 and F2 

• Increase strength of F1 to create negative 

dispersion in the arcs such that γt = 45 

• Optics distortions tolerable due to small 

transverse beam emittances 

 

 Basic linear properties are okay 

• Fast extraction mainly unaffected (vert. plane!) 

• Closed orbit correction works as for ions 

21.05.2013 SIS100 Proton Operation / D. Ondreka 5 

Proton optics with shifted γt 

Fast extraction of protons 

rx 

ry 



Transition Shift Scheme: 

Creation of Single Compressed Bunch 
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 Operation scheme for ions can’t be used: 

• Stacking of 4 batches at injection 

• Pre-compression and bunch-rotation at flattop 

• Not suitable for protons due to small synchrotron 

frequency at flattop: 

𝜂 =
1

𝛾2
−
1

𝛾𝑡2
= 0.0005   →    𝑓𝑠= 16 Hz 

 

 Proton scheme 

• Stacking of 4 bunches at injection 

 Acceleration of single bunch at h=1 in SIS18 

 Transfer of four cycles into SIS100 at h=10 

 Matching with higher harmonics in SIS18 

• Creation of single bunch 

 Bunch merging to 2 bunches @ h=5 

 Batch compression to 2 bunches @ h=10 

 Bunch merging to 1 bunch @ h=5 

• Compression 

 Acceleration with constant voltage 

 Adiabatic compression to final bunch length 
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Transverse Dynamics: 

Chromaticity Correction 

 Large chromatic tune spread 

• Large chromaticities in shifted optics 

• Large momentum spread of single bunch 

 

 Chromaticity correction mandatory 

• Target value for tune spread: ΔQ = ±0.05 

• Correction scheme different from ions due to 

oscillating dispersion function 

• C-Sextupoles in one sector can’t have same sign 

 

 Change of sextupole powering scheme 

• Present scheme incompatible with protons 

 6 families, each linking 4 CH/CV of two adjacent sectors 

 Effectively only 2 families due to symmetry breaking 

• New scheme required 

 Group 6 CH/CV of identical cells into a family 

 8 families respecting symmetry 

 Disadvantage: longer cable lengths 

 Change request in preparation 
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Present scheme New scheme 

21.5 Qh 
22.0 

17.5 

18.0 p Ion 

γt 45.0 15.3 

dp/p 5·10-3 10-3 

Ch -53.0 -22.6 

ΔQh ±0.26 ±0.02 

Cv -24.1 -22.6 

ΔQv ±0.12 ±0.02 



Transition Shift Scheme: 

Longitudinal Dynamics 

 

 Longitudinal simulations 

• Inclusion of longitudinal space charge 

• Inclusion of beam loading 

 

 Results 

• Merging and batch compression 

 Feasible within reasonable times 

 Beam loading has significant influence 

 Emittance dilution of injected beam by factor 3 

required to alleviate beam loading effects 

• Acceleration 

 Emittance dilution leads to 

• Slow transition to full ramp rate 

• Slight reduction of full ramp rate 

 Simulation can’t be trusted close to flattop 

because effect of η1 not included 
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Step Time [ms] 

Merging 4 -> 2 50 

Batch compression 110 

Merging 2 -> 1 100 

Transition to max. rate 300 

Acceleration 420 

Total time 980 

Batch comp. h=56 Acceleration Bunch merging 4  2 

[ Images and data courtesy of O. Chorniy ] 
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Transition Shift Scheme: 

Distorted Buckets Near Flattop 

 Longitudinal dynamics near flattop 

• Phase slip becomes very small 

• Higher orders can’t be neglected 

• Bucket dominated by new fixed point 

 Shorter bunches with higher momentum spread 

 Asymmetry in momentum distribution 

• Chromaticity correction to ΔQ = ±0.05 helps 

 Larger bucket due to reduction of η1 

 

 Implications 

• Without field errors no problems 

• Results with field errors ambiguous 

 Short-term (500 turn) dynamic aperture reasonable 

 Long-term tracking simulations (32000 turns) 

give losses of few per cent 

 

 Limitation of present studies 

• Only stationary buckets, no beam loading 

• Origin of losses needs to be better understood  

• Further studies necessary 
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[ Images and data courtesy of S. Sorge ] 

𝜂 = 𝜂0 + 𝜂1𝛿 =
1

𝛾2
−
1

𝛾𝑡
2
+ 𝜂1𝛿 

[ Ng, NIM A 404, 1998] 

SIS100: Bucket and bunch at flattop 

εn=12 eVs 

An=26 eVs 

fixed point 

𝛿fp =
𝜂0
𝜂1

 

Simulation of losses 

over 32000 turns 

Field errors off <0.1 % 

Field errors on 2.0 % 

DA over 500 turns 



Transition Shift Scheme: 

Conclusions 

 Basic properties of the scheme seem okay 

• Injection, extraction 

• Orbit and chromaticity correction 

 

 Non-linear aspects raise some concerns 

• η1-dominated buckets near flattop 

 Shouldn’t we rather avoid this regime? 

 What about beam stability in this regime? 

• Horizontal beta functions 

 Large peak values amplify non-linear field errors 

 Easily distorted by gradient errors 

 

 Feasibility of the transition shift scheme 

can’t be granted as of today 

• Further studies necessary 

• Time consuming and involved 

 

 Can we afford uncertainty without fallback? 

• Design decisions have to be taken now! 
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Transition Jump Scheme: 

Motivation 

 Concerns with transition shift scheme 

require fallback option 

 

 Idea: Implement transition jump scheme 

• Time-honored scheme for proton accelerators in 

relevant energy range (PS, AGS) 

 

 Advantages for SIS100 

• Avoid η1-dominated regime at flattop 

• Avoid creation of single bunch at injection 

(reduces all intensity effects until flattop) 

 

 Challenges: 

• Lattice layout 

• Integration of jump quadrupoles 

• Creation of single bunch at flattop 

 

 

 

21.05.2013 SIS100 Proton Operation / D. Ondreka 12 

SIS100 PS (AD) AGS (SE) 

#protons/cycle 2·1013 2·1013 7·1013 

Circumference [m] 1083.6 628.3 807.0 

Gamma transition 8.9 6.1 8.5 

RF Voltage [kV] 280 200 400 

Injection 

Energy [GeV/u] 4.0 1.4 1.9 

#bunches 4 4 6 

Harmonic number 10 (5) 8 6 

Extraction 

Energy [GeV/u] 29.0 25.1 24.0 

#bunches 1 4 dc 

Harmonic number 5 20 –  

RF gymnastics 
merging 

+ batch comp. 

batch comp. 

+ bunch rot. 

debunching 

+ spreading 



Transition Jump Scheme: 

General Features 

 Figure of merit: speed of transition crossing 

• Typical values for jump: Δγt = 1...2 

• Typical jump time: 0.5 ms 

 

 How to modify γt? 

• γt depends on dispersion: 

𝛼𝑐 =
1

𝛾𝑡
2
=  

𝐷(𝑠)

𝜌(𝑠)
𝑑𝑠 

• Modify dispersion in the arcs to change γt 

 

 Standard strategy: use of π-doublets 

• Two quadrupoles of opposite strengths 

separated by π in horizontal phase advance 

• Tune shifts zero by construction 

• Local modification of beta function 

• Global modification of dispersion function 

• Δγt linear in strength for adequate dispersion 

 
∆𝛾𝑡 ~ 𝑘 𝐷1

2 − 𝐷2
2 + 𝑂(𝑘2) 
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PS @ CERN 

(bipolar jump) 

AGS @ BNL 

(unipolar jump) 



Transition Jump Scheme: 

Optics Design 

 π-doublet quadrupoles in cells 9 and D 

 Large difference in dispersion, i.e. large Δγt with small k 

 Close to ideal phase advance 

 Small distortion of dispersion (little change in max!) 

 Negligible distortion of beta functions 

 Chromaticity slightly positive to avoid instabilities after crossing 
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1 2 3 4 5 6 7 8 9 A B C D E 

Q1 Q2 

Δμx ≈ π 

Optical Properties 

Qh, Qv 10.4, 10.3 

γt 8.9 

ξh, ξv +1, +1 

Dmax [m] 6.8 

βxy,max [m] 23.5 

Δγt ±1 



Transition Jump Scheme: 

Quadrupole Module Integration 

 General layout of arc module 

• Upstream unit with QD and position US 

• Downstream unit with QF, ST, and position DS 

• Positions US, DS used alternatively for 

chromaticity sextupoles C{H,V} and BPMs 

 

 Integration of jump quadrupoles QJ 

• Need to be placed into DS position 

• Same module configuration for cells 9 and D 

• Identical to existing CH-module when CH is 

replaced by QJ 

• QJ will be integrated like other correctors 

 

 Replace present modules for cells 9 and D 

by new jump quadrupole module 

• Leads to omission of CV in cell 9 

• Chromaticity correction possible without this 

magnet for all operation modes 

• Saves 6 magnets + 1 power converter 
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Beam 

QD US QF DS ST 

downstream unit upstream unit 

general module 

QD BPM QF CH ST 

CH module 

QD BPM QF QJ ST 

jump quadrupole module 



Transition Jump Scheme: 

Jump Quadrupoles 

 Number of magnets: 6x2 (2 per sector) 

 

 Placement in cryostat 

• Same location as chromaticity sextupole 

• Same current leads as chrom. sextupoles 

• Mounting onto main quadrupole yoke using 

standard adapter 

 

 Preliminary s.c. magnet design exists 

• Based on main quadrupole yoke 

• Uses nuclotron cable 

• Quench margin critical, but seems reachable 

 N.c. design also possible due to short pulse 

 

 Heat load in vacuum chamber 

• Average load below 1W despite large ramp rate 

• No problems for chamber cooling expected 
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Jump Quadrupole Parameters 

B’·L [(T/m)*m] ±0.4 

Imax [A] ±250 

Rise time [ms] 25 

Jump time [ms] 0.5 

Fall time [ms] 15 

Rep. rate [Hz] 0.5 

Av. heat load [W] <10 



Transition Jump Scheme: 

Conclusions 

 SIS100 lattice can easily be rearranged to 

support a transition jump scheme 

• Optics with sufficient γt variation defined 

 Basic properties checked 

 All requirements for jump scheme satisfied 

• Simple change of quadrupole module 

configuration without side effects 

 

 Jump quadrupole design feasible 

• Integration into cryostat possible 

• Average heat load within limits 

• Preliminary s.c. design exists 

• Alternatively n.c. design possible 

 

 Furthers studies necessary to verify scheme 

• Long. dynamics and timing of transition crossing 

• Creation of compressed single bunch at flattop 
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Fast extraction with jump optics 

Transition crossing with 

longitudinal space charge 

[ Risselada, CAS 1992] 
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Proposal 

 

 Change of powering scheme for 

chromaticity sextupoles 

• Mandatory for shift and jump scheme 

 

 

 Change lattice to support jump scheme 

• Replace quadrupole modules in cells 9 and D 

by jump quadrupole module 

• Reserve space for jump quadrupoles 

• Make sure jump quadrupoles can be integrated 

• Omit CV from cell 9 (saves 6 magnets + 1 PC) 

• Jump quadrupole design can be done later 

 

 Support of both shift and jump scheme 

• Further studies on both schemes 

• Based on results decide whether to implement 

jump scheme or leave as an upgrade option 
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Present scheme New scheme 

QD BPM QF ST 

jump quadrupole module 
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Transition Shift Scheme: 

Optics Change 

 Shifted optics less favorable at low energy 

• Dynamic aperture tight for larger beam size 

• Increased losses due to larger amplitudes 

 

 Solution: Optics change during ramp 

• Use symmetric optics at injection 

 Smaller beta functions and dispersion 

 Smaller horizontal chromaticity 

 Dynamic aperture much larger 

 No losses observable for energies below 22 GeV 

• Challenges 

 Control of chromaticity during optics change 

 Design of optimal transition to shifted optics 
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Proton optics with shifted γt 

Qh Qv γt Ch Cv 

21.8 17.70 45.0 -53.0 -24.1 

Qh Qv γt Ch Cv 

21.8 17.70 18.3 -26.0 -22.9 

Symmetric proton optics 

Relative losses 

as function of 

beam energy 

DA for shifted optics 

at E = 7 GeV 

[ Images courtesy of S. Sorge ] 



Transition Shift Scheme: 

SIS18 

 Slow extraction from SIS18 

• SIS18 extraction optics has γt = 5.6 

• Max. energy for protons 4.7GeV/u  γ = 6.1 

• Transition crossing during acceleration does not 

work 

 

 Shifted optics with imaginary γt  

• Oscillating dispersion 

• Large beta functions 

• Slow extraction impossible with this optics 

 

 Working scheme: 

• Inject with normal injection optics 

• Pass through extraction optics during ramp 

• Shift to imaginary γt at end of ramp 

• Debunch beam in shifted optics 

• Restore extraction optics moving γt through beam 

• Possible due to low intensity 
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SIS18 extraction optics 

SIS18 optics with γt = 5.8i 

Main quadrupole 

ramp during cycle 

with p @ 4.7GeV/u 


