

FAIR beam parameters and intensity limits

Oliver Boine-Frankenheim^{1,2}

Primary Beams Division, Beam Physics Department, GSI, Darmstadt Pelectrical Engineering and IT Department, Accelerator Physics Group, TU Darmstadt

Special thanks to S. Appel, O. Geithner

Contents

- NuSTAR/Panda beam requirements and perfomance goals
 - Production targets, storage rings
- Beam intensity limits for primary beams in SIS-100
 - Acceptances, activation, space charge, beam instabilities
- UNILAC/SIS-18 performance estimates
 - Optimization of beam parameters

NuSTAR requirements

FAIR primary beam chain: Uranium

Fill synchrotron to the 'space charge limit' (within allowed phase space area).

 \sim

NuSTAR: other primary ions (fast extraction)

Beam Parameters	Ref. Ion: U ²⁸⁺	Bi ²⁶⁺ , Pb ²⁶⁺ , Au ²⁶⁺	Xe ²¹⁺ , Kr	Ar ¹⁰⁺	Ref. Ion: U ²⁸⁺	Bi ²⁶⁺ , Pb ²⁶⁺ , Au ²⁶⁺	Xe ²¹⁺ , Kr	Ar ¹⁰⁺
	Commissioning				Future operation in MSV			
Time structure		fast extraction						
Repetition rate		0.5-0	.01 Hz		0.7-0.1 Hz			
Number of ions per cycle	2x10 ¹⁰	3x10 ⁹	7x10 ⁹	8x10 ¹⁰	5x1	10 ¹¹	7x10 ¹¹	10 ¹²
Ref. energy [GeV/u]		1.5		1.0		1.5		1.0
Energy range [GeV/ u]	0.5-1.5							
Transverse emittance [mm mrad]					11(h)x 4(v)			
Pulse length [ns]	70			50-100				
Momentum spread					5x10 ⁻⁴			
Beam spot radius [mm]	1x2	2-4x6	2x3	3x5	1x2·	-4x6	2x3	3x5
				Stand: 08.08.2014			NES	R SPARC

Antiprotons: HESR and PANDA requirements

FAIR primary beam chain: Protons

Optional: 8 injections and up to 4E13 protons ('space charge limit').

Beam loss in SIS-100: "Hands-on-maintenance"

Loss estimates (example: U²⁸⁺)

SIS-18 beam los	s/cycle	Fractional	(%)
injection			10
rf capture			5
space charge	2E11-	>1.2E11	10
ionization			30
fast extraction			2

SIS-100 beam los	s/cycle	Fractional (%)
injection		2
space charge		10
ionization		1 _{->3 5⊏11 5}
slow extraction	4.JL I	10

Expected main beam loss mechanisms:

• Charge exchange (dynamic vacuum)

$$U^{28+} + X \to U^{29+} + X + e$$
 (Lifetime)⁻¹: $\tau^{-1} = \beta_0 c \sigma_{loss} \frac{P(N, t)}{k_B T}$

- Space charge induced resonance crossing
- o Injection/Extraction

Uncontrolled loss below 1 W/m (1 GeV Protons). **Design goal:** controlled losses on collimators

Strasik, et al., PRSTAB 2010, Strasik, et al., PRSTAB 2015

SIS-100 bucket areas and acceptances: U²⁸⁺

Bucket area eVs/u	0.15 x 2 (10 T/s)	0.25 x 10 (3 T/s)	1.6 x 1
Bunch area eVs/u	0.1 x 2	0.15 x 8 = 1.2	1.6 x 1
Space charge factor	0.7	0.5	< 0.1
Acceptance mm mrad	150/50	100/40	100/40
Emittances mm mrad	150/50	35/15	12/5
SC tune shift ΔQ_v	-0.5	-0.3	-0.8

Tolerable longitudinal dilution : 1.5 (SIS18), 1.3 (SIS100 with compression)

Fast barrier pre-compression in SIS-100

SIS-100 'incoherent space charge limit'

Tune shift:
$$\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{4}{\varepsilon_y \beta_0^2 \gamma_0^3} \frac{1}{1 + \sqrt{\varepsilon_y / \varepsilon_x}} \qquad |\Delta Q_y^{sc}| \lesssim 0.3$$

Present predictions come with a large error bar !

Estimated 'limits' with dual rf buckets: $U^{28+}: 6-7 \ge 10^{11} (4-5 \ge 10^{11}/s)$ p: $4 \ge 10^{13}$

Future options: (partial) space charge compensation

Beam instabilities and impedances in SIS-100

UNILAC/SIS18 Beam parameter

	UNILAC today	FAIR	2017
Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺
Current (mA)	5/1	15	3
Emittance, 4ơ (h, mm mrad)	7/7	5	7
Momentum spread (2σ)	1E-3/1E-3	5E-4	5E-4
	SIS-18 today	FAIR design	2017
Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺
Reference energy GeV/u	0.2/1	0.2	1
lons per cycle	4E10/4E9	1.5E11	2E10
cycle rate (Hz)	0.5 Hz	2.7 Hz	2 Hz
Long. dilution	> 2	1.5	2

UNILAC/SIS-18 presentations: L. Groening, J. Stadlmann

UNILAC/SIS-18 multi-turn injection: initial dp/p

054201-4

Optimized beam parameters: U²⁸⁺ multi-turn injection (MTI) efficiency

	UNILAC	SIS18
Current (mA)	15 mA	15x14 (->2E11)
Emittance (mm mrad)	7/7	150/50

Currently MTI losses are about 30 %

Optimized injection parameters: **Genetic algorithm** + pyORBIT(space charge)

-> Lower injection losses and larger transmission (depends on initial loss).

Next step: include transmission (charge exchange losses) in optimization.

S. Appel, et al. IPAC15

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Conclusions: Beam parameter and intensity limitations

User requirements, primary beams:

 NuSTAR: short heavy ion bunch (50-100 ns) or slow extraction (≥ 1 s) extracted intensity: N/s > 1E11/s (was 1E12/s in the CDR/2001)

- PANDA: short (50 ns) proton bunch (2E13)
- cycle times determined by cooling times in CR collector ring (approx. 1 s for HI, 10 s for pbars) or extraction plateau.

Expected intensity limitations for primary beams (SIS-100):

- 'space charge limit'
- acceptances and rf bucket area (reduced by space charge)
- activation/damage due to beam loss
- beam instabilities (protons)
- -> estimated limits (large errors bars):

U²⁸⁺: 6-7 x 10¹¹ per cycle (for other HI according to space limit and injector performance)

p: 4 x 10¹³

UNILAC/SIS-18 limitations:

- UNILAC current/emittance and multi-turn injection efficiency
- rf bucket area for fast ramping
- charge exchange and dynamic vacuum (HI)
- space charge and resonance crossing

Additional material (not part of the presentation)

Short remark: protons vs. heavy ions

UNILAC, SIS18/100:

Operation with <u>intermediate</u> charge state ions to reduce space charge effects + light ions + protons

Lifetime of intermediate charge state heavy-ions in rings

- Large cross sections for electron stripping/capture
- (stable) residual gas pressure of the order of 10⁻¹² mbar required for sufficient lifetime
- Beam loss causes dynamic pressure instabilities.

-> at present heavy-ion intensities are limited not limited by space charge !

Production of intermediate charge state ions

- Performance of ion sources compared to proton sources.
- Stripping efficiency of heavy-ions at low energies.
- Conventionally 'Liouvillian' multi-turn injection into rings.
 - -> 'space charge limited' intensities in more difficult to reach for heavy-ions.

Protons and light ions: Operation close or above transition energy in SIS-100 -> possible additional beam loss for protons

Collective effects in SIS18/100: interplay

Incoherent space charge:

 $\varepsilon_0 \nabla \cdot \vec{E} = \rho$ (in the rest system of the beam) -> tune shift: $\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{4}{\varepsilon_y \beta_0^2 \gamma_0^3} \frac{1}{1 + \sqrt{\varepsilon_y / \varepsilon_x}}$

-> beam loss, modification of coherent effects

Impedances:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ (laboratory system)

-> image currents in the beam pipe

-> magnetic/resistive materials: ferrite, magnetic alloy

-> coherent instabilities and feedback requirements

Secondary particles:

electron clouds created by residual gas ionization and SEY.

-> trapping of electron during slow extraction, two-stream instability.

Thin beam pipe (0.3 mm stainless steel)mage currer

Intrabeam scattering: -> Laser cooling in SIS-100

In the FAIR synchrotrons SIS-18 and SIS-100 different incoherent/coherent effects occur simultaneously. Beam loss in SIS-100 has be limited below 5 % (injection energy) and 1-2 % (extraction energy) -> Computer modeling in combination with dedicated experiments (model validation) is essential.

Heat load in SIS100: Longitudinal impedances

Thin (0.3 mm) beam pipe

Proton bunch parameters

Final energy	SIS-100 29 GeV
Protons per cycle	2E13
cycle rate (Hz)	0.5
#bunches	1
bunch length	10 ns

SIS100 beam pipe

Temperature distribution with attached cooling tube

Special stainless steel (Böhler P506) for all dipole and quadrupole magnet chambers.

SIS100 beam pipe: thin (0.3 mm) stainless steel pipe with attached cooling pipes

- still mechanically robust (with supporting rips) for 10⁻¹² mbar
- tolerable eddy current heating (< 10 W/m) and field distortion
- sufficient shielding of beam induced EM fields above 50 kHz
- active pumping (< 20 K wall temperature)

One of the most critical components in SIS100 !